INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate |
Chenxi Lu(卢晨曦)1, Senjiang Yu(余森江)1, Lingwei Li(李领伟)1, Bo Yang(杨波)2, Xiangming Tao(陶向明)2, Gaoxiang Ye(叶高翔)2 |
1 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract A new crystal growth theoretical model is established for the low-dimensional nanocrystals on an isotropic and quasi-free sustained substrate. The driven mechanism of the model is based on the competitive growth among the preferential growth directions of the crystals possessing anisotropic crystal structures, such as the hexagonal close-packed and wurtzite structures. The calculation results are in good agreement with the experimental findings in the growth process of the low-dimensional Zn nanocrystals on silicone oil surfaces. Our model shows a growth mechanism of various low-dimensional crystals on/in the isotropic substrates.
|
Received: 21 November 2019
Revised: 03 January 2020
Accepted manuscript online:
|
PACS:
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
68.03.-g
|
(Gas-liquid and vacuum-liquid interfaces)
|
|
68.55.A-
|
(Nucleation and growth)
|
|
Corresponding Authors:
Lingwei Li, Gaoxiang Ye
E-mail: lingwei@epm.neu.edu.cn;gxye@zju.edu.cn
|
Cite this article:
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔) A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate 2020 Chin. Phys. B 29 038101
|
[1] |
Xu H J, Mi J S, Li Y, Zhang B, Cong R D, Fu G S and Yu W 2017 Chin. Phys. B 26 128102
|
[2] |
Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947
|
[3] |
Roder H, Hahn E, Brune H, Bucher J P and Kern K 1993 Nature 366 141
|
[4] |
Li Y, Ling H, Gao L, Song Y L, Tian M L and Zhou F Q 2015 Chin. Phys. Lett. 32 107802
|
[5] |
Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W and Zhou X Y 2018 Chin. Phys. B 27 047211
|
[6] |
Wang Z L and Song J H 2006 Science 312 242
|
[7] |
Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
|
[8] |
Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F and Yan H Q 2003 Adv. Mater. 15 353
|
[9] |
Michely T, Hohage M, Bott M and Comsa G 1993 Phys. Rev. Lett. 70 3943
|
[10] |
Geng D C, Meng L, Chen B Y, Gao E L, Yan W, Yan H, Luo B R, Xu J, Wang H P, Mao Z P, Xu Z P, He L, Zhang Z Y, Peng L M and Yu G 2014 Adv. Mater. 26 6423
|
[11] |
Persson A I, Larsson M W, Stenström S, Ohlsson B J, Samuelson L and Wallenberg L R 2004 Nat. Mater. 3 677
|
[12] |
Lu C X, Cheng Y, Pan Q F, Tao X M, Yang B and Ye G X 2016 Sci. Rep. 6 19870
|
[13] |
Lu C X, Jin Y, Tao X M, Yang B and Ye G X 2018 CrystEngComm 20 122
|
[14] |
Gibbs J W 1928 On the Equilibrium of Heterogeneous Substances (New York: Longmans)
|
[15] |
Donnay J D H and Harker D 1937 Am. Mineral. 22 446
|
[16] |
Wang H, Song X P, You L and Zhang B 2015 Scr. Mater. 108 68
|
[17] |
Köhl D, Luysberg M and Wuttig M 2010 J. Phys. D: Appl. Phys. 43 205301
|
[18] |
Wang Q, Chen G and Zhou N 2009 Nanotechnology 20 085602
|
[19] |
Ye G X, Michely T, Weidenhof V, Friedrich I and Wuttig M 1998 Phys. Rev. Lett. 81 622
|
[20] |
Luo M B, Ye G X, Xia A G, Jin J S, Yang B and Xu J M 1999 Phys. Rev. B 59 3218
|
[21] |
Einstein A 1905 Ann. Phys. 322 549
|
[22] |
Einstein A 1906 Ann. Phys. 324 371
|
[23] |
Levine I N 1988 Physical chemistry 3rd edn (New York: McGraw-Hill)
|
[24] |
Cho S and Lee K H 2010 J. Mater. Chem. 20 6982
|
[25] |
Kast M, Schroeder P, Hyun Y J and Pongratz P 2007 Nano Lett. 7 2540
|
[26] |
Cheng Y, Lu C X, Yang B, Tao X M, Wang J F and Ye G X 2016 Phys. Lett. A 380 2989
|
[27] |
Liu X D, Kaiser V, Wuttig M and Michely T 2004 J. Cryst. Growth 269 542
|
[28] |
Geng D C, Wu B, Guo Y L, Huang L P, Xue Y Z, Chen J Y, Yu G, Jiang L, Hu W P and Liu Y Q 2012 Proc. Natl. Acad. Sci. USA 109 7992
|
[29] |
Guo H, Chen H, Que Y D, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107
|
[30] |
Zhang X F, Liu Z H, Liu W L, Lu X Y, Li Z J, Yu Q K, Shen D W and Xie X M 2019 Chin. Phys. B 28 086103
|
[31] |
Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K and Kim S M 2018 Science 362 817
|
[32] |
Mo Z J, Hao Z H, Ping X J, Kong L N, Yang H, Cheng J L, Zhang J K, Jin Y H and Li L 2018 Chin. Phys. B 27 016102
|
[33] |
Takeyama Y, Maruyama S and Matsumoto Y 2011 Cryst. Growth 11 2273
|
[34] |
Voigt M, Dorsfeld S, Volz A and Sokolowski M 2003 Phys. Rev. Lett. 91 026103
|
[35] |
Mayers B and Xia Y N 2002 J. Mater. Chem. 12 1875
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|