Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038101    DOI: 10.1088/1674-1056/ab6968
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate

Chenxi Lu(卢晨曦)1, Senjiang Yu(余森江)1, Lingwei Li(李领伟)1, Bo Yang(杨波)2, Xiangming Tao(陶向明)2, Gaoxiang Ye(叶高翔)2
1 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  A new crystal growth theoretical model is established for the low-dimensional nanocrystals on an isotropic and quasi-free sustained substrate. The driven mechanism of the model is based on the competitive growth among the preferential growth directions of the crystals possessing anisotropic crystal structures, such as the hexagonal close-packed and wurtzite structures. The calculation results are in good agreement with the experimental findings in the growth process of the low-dimensional Zn nanocrystals on silicone oil surfaces. Our model shows a growth mechanism of various low-dimensional crystals on/in the isotropic substrates.
Keywords:  crystal growth      low-dimensional nanocrystals      isotropic substrates      preferential growth  
Received:  21 November 2019      Revised:  03 January 2020      Accepted manuscript online: 
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.07.Bc (Nanocrystalline materials)  
  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
  68.55.A- (Nucleation and growth)  
Corresponding Authors:  Lingwei Li, Gaoxiang Ye     E-mail:  lingwei@epm.neu.edu.cn;gxye@zju.edu.cn

Cite this article: 

Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔) A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate 2020 Chin. Phys. B 29 038101

[1] Xu H J, Mi J S, Li Y, Zhang B, Cong R D, Fu G S and Yu W 2017 Chin. Phys. B 26 128102
[2] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947
[3] Roder H, Hahn E, Brune H, Bucher J P and Kern K 1993 Nature 366 141
[4] Li Y, Ling H, Gao L, Song Y L, Tian M L and Zhou F Q 2015 Chin. Phys. Lett. 32 107802
[5] Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W and Zhou X Y 2018 Chin. Phys. B 27 047211
[6] Wang Z L and Song J H 2006 Science 312 242
[7] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
[8] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F and Yan H Q 2003 Adv. Mater. 15 353
[9] Michely T, Hohage M, Bott M and Comsa G 1993 Phys. Rev. Lett. 70 3943
[10] Geng D C, Meng L, Chen B Y, Gao E L, Yan W, Yan H, Luo B R, Xu J, Wang H P, Mao Z P, Xu Z P, He L, Zhang Z Y, Peng L M and Yu G 2014 Adv. Mater. 26 6423
[11] Persson A I, Larsson M W, Stenström S, Ohlsson B J, Samuelson L and Wallenberg L R 2004 Nat. Mater. 3 677
[12] Lu C X, Cheng Y, Pan Q F, Tao X M, Yang B and Ye G X 2016 Sci. Rep. 6 19870
[13] Lu C X, Jin Y, Tao X M, Yang B and Ye G X 2018 CrystEngComm 20 122
[14] Gibbs J W 1928 On the Equilibrium of Heterogeneous Substances (New York: Longmans)
[15] Donnay J D H and Harker D 1937 Am. Mineral. 22 446
[16] Wang H, Song X P, You L and Zhang B 2015 Scr. Mater. 108 68
[17] Köhl D, Luysberg M and Wuttig M 2010 J. Phys. D: Appl. Phys. 43 205301
[18] Wang Q, Chen G and Zhou N 2009 Nanotechnology 20 085602
[19] Ye G X, Michely T, Weidenhof V, Friedrich I and Wuttig M 1998 Phys. Rev. Lett. 81 622
[20] Luo M B, Ye G X, Xia A G, Jin J S, Yang B and Xu J M 1999 Phys. Rev. B 59 3218
[21] Einstein A 1905 Ann. Phys. 322 549
[22] Einstein A 1906 Ann. Phys. 324 371
[23] Levine I N 1988 Physical chemistry 3rd edn (New York: McGraw-Hill)
[24] Cho S and Lee K H 2010 J. Mater. Chem. 20 6982
[25] Kast M, Schroeder P, Hyun Y J and Pongratz P 2007 Nano Lett. 7 2540
[26] Cheng Y, Lu C X, Yang B, Tao X M, Wang J F and Ye G X 2016 Phys. Lett. A 380 2989
[27] Liu X D, Kaiser V, Wuttig M and Michely T 2004 J. Cryst. Growth 269 542
[28] Geng D C, Wu B, Guo Y L, Huang L P, Xue Y Z, Chen J Y, Yu G, Jiang L, Hu W P and Liu Y Q 2012 Proc. Natl. Acad. Sci. USA 109 7992
[29] Guo H, Chen H, Que Y D, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107
[30] Zhang X F, Liu Z H, Liu W L, Lu X Y, Li Z J, Yu Q K, Shen D W and Xie X M 2019 Chin. Phys. B 28 086103
[31] Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K and Kim S M 2018 Science 362 817
[32] Mo Z J, Hao Z H, Ping X J, Kong L N, Yang H, Cheng J L, Zhang J K, Jin Y H and Li L 2018 Chin. Phys. B 27 016102
[33] Takeyama Y, Maruyama S and Matsumoto Y 2011 Cryst. Growth 11 2273
[34] Voigt M, Dorsfeld S, Volz A and Sokolowski M 2003 Phys. Rev. Lett. 91 026103
[35] Mayers B and Xia Y N 2002 J. Mater. Chem. 12 1875
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[3] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[4] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[5] Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3
Jie Tian(田杰), Xiao Cao(曹笑), Wudi Wang(王无敌), Jian Liu(刘坚), Jianshu Dong(董建树), Donghua Hu(胡冬华), Qingguo Wang(王庆国), Yanyan Xue(薛艳艳), Xiaodong Xu(徐晓东), and Jun Xu(徐军). Chin. Phys. B, 2021, 30(10): 108101.
[6] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[9] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[10] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[11] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[12] Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(12): 128103.
[13] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[14] Linear and nonlinear optical analysis on semiorganic L-proline cadmium chloride single crystal
Mohd Anis, M I Baig, S S Hussaini, M D Shirsat, Mohd Shkir, H A Ghramh. Chin. Phys. B, 2018, 27(4): 047801.
[15] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
No Suggested Reading articles found!