Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026401    DOI: 10.1088/1674-1056/ab6203
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys

Weijie Li(李伟节)1,2, Chongyu Wang(王崇愚)1
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The doping effects on the stacking fault energies (SFEs), including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault, were studied by first principles calculation of the γ' phase in the Ni-based superalloys. The formation energy results show that the main alloying elements in Ni-based superalloys, such as Re, Cr, Mo, Ta, and W, prefer to occupy the Al-site in Ni3Al, Co shows a weak tendency to occupy the Ni-site, and Ru shows a weak tendency to occupy the Al-site. The SFE results show that Co and Ru could decrease the SFEs when added to fault planes, while other main elements increase SFEs. The double-packed superlattice intrinsic stacking fault energies are lower than superlattice extrinsic stacking fault energies when elements (except Co) occupy an Al-site. Furthermore, the SFEs show a symmetrical distribution with the location of the elements in the ternary model. A detailed electronic structure analysis of the Ru effects shows that SFEs correlated with not only the symmetry reduction of the charge accumulation but also the changes in structural energy.
Keywords:  stacking fault energy      site preference      Ni-based superalloys      electronic structure  
Received:  07 June 2019      Revised:  13 December 2019      Accepted manuscript online: 
PACS:  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  61.72.Nn (Stacking faults and other planar or extended defects)  
  61.72.S- (Impurities in crystals)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701502).
Corresponding Authors:  Chongyu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Weijie Li(李伟节), Chongyu Wang(王崇愚) Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys 2020 Chin. Phys. B 29 026401

[1] Reed R C 2008 The superalloys: fundamentals and applications (Cambridge: Cambridge University Press)
[2] Yokokawa T, Harada H, Mori Y, Kawagishi K, Koizumi Y, Kobayashi T, Yuyama M and Suzuki S 2016 Proceedings of the 13th Intenational Symposium of Superalloys, pp. 123-130
[3] Yu X X and Wang C Y 2012 Mater. Sci. Eng. A 539 38
[4] Rao Y, Smith T M, Mills M J and Ghazisaeidi M 2018 Acta Mater. 148 173
[5] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[6] Zhang W, Lin J, Xu W, Fu H and Yang G 2017 Tsinghua Sci. Technol. 22 675
[7] Blöchl P E 1994 Phys. Rev. B 50 17953
[8] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[9] Wagner C and Schottky W J Z 1930 Phys. Chem. B 11 171
[10] Ruban A V and Skriver H L 1997 Phys. Rev. B 55 856
[11] Jiang C and Gleeson B 2006 Scr. Mater. 55 433
[12] Liu S H, Wen M R, Li Z, Liu W Q, Yan P and Wang C Y 2017 Mater. & Des. 130 157
[13] Wen M and Wang C 2018 Phys. Rev. B 97 024101
[14] Eurich N and Bristowe P 2015 Scr. Mater. 102 87
[15] Voskoboinikov R 2013 Phys. Met. Metallogr. 114 545
[16] Suzuki H 1962 J. Phys. Soc. Jpn. 17 322
[17] Suzuki A, Inui H and Pollock T M 2015 Ann. Rev. Mater. Res. 45 345
[18] Titus M S, Eggeler Y M, Suzuki A and Pollock T M 2015 Acta Mater. 82 530
[19] Nakashima P N H, Smith A E, Etheridge J and Muddle B C 2011 Science 331 1583
[20] Kioussis N, Herbranson M, Collins E and Eberhart M E 2002 Phys. Rev. Lett. 88 125501
[21] Wang C Y, Liu S Y and Han L G 1990 Phys. Rev. B 41 1359
[22] Wang C, Yue Y and Liu S 1990 Phys. Rev. B 41 6591
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!