Special Issue:
TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale
|
TOPICAL REVIEW—Advanced calculation & characterization of energy storage materials & devices at multiple scale |
Prev
Next
|
|
|
Review on electrode-level fracture in lithium-ion batteries |
Bo Lu(吕浡)1,2, Chengqiang Ning(宁成强)1,2, Dingxin Shi(史定鑫)3, Yanfei Zhao(赵炎翡)3, Junqian Zhang(张俊乾)1,2 |
1 Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China; 2 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, China; 3 Department of Civil Engineering, Shanghai University, Shanghai 200444, China |
|
|
Abstract Fracture occurred in electrodes of the lithium-ion battery compromises the integrity of the electrode structure and would exert bad influence on the cell performance and cell safety. Mechanisms of the electrode-level fracture and how this fracture would affect the electrochemical performance of the battery are of great importance for comprehending and preventing its occurrence. Fracture occurring at the electrode level is complex, since it may involve fractures in or between different components of the electrode. In this review, three typical types of electrode-level fractures are discussed: the fracture of the active layer, the interfacial delamination, and the fracture of metallic foils (including the current collector and the lithium metal electrode). The crack in the active layer can serve as an effective indicator of degradation of the electrochemical performance. Interfacial delamination usually follows the fracture of the active layer and is detrimental to the cell capacity. Fracture of the current collector impacts cell safety directly. Experimental methods and modeling results of these three types of fractures are concluded. Reasonable explanations on how these electrode-level fractures affect the electrochemical performance are sorted out. Challenges and unsettled issues of investigating these fracture problems are brought up. It is noted that the state-of-the-art studies included in this review mainly focus on experimental observations and theoretical modeling of the typical mechanical damages. However, quantitative investigations on the relationship between the electrochemical performance and the electrode-level fracture are insufficient. To further understand fractures in a multi-scale and multi-physical way, advancing development of the cross discipline between mechanics and electrochemistry is badly needed.
|
Received: 30 October 2019
Revised: 30 December 2019
Accepted manuscript online:
|
PACS:
|
62.20.mm
|
(Fracture)
|
|
82.45.Fk
|
(Electrodes)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701604), the National Natural Science Foundation of China (Grant Nos. 11702166, 11702164, 11872236, and 11332005), and the Shanghai Sailing Program, China (Grant No. 17YF1606000). |
Corresponding Authors:
Yanfei Zhao
E-mail: yfzhao@shu.edu.cn
|
Cite this article:
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾) Review on electrode-level fracture in lithium-ion batteries 2020 Chin. Phys. B 29 026201
|
[1] |
Zhang J, Lu B, Song Y and Ji X 2012 J. Power Sources 209 220
|
[2] |
Zhao Y, Lu B and Zhang J 2018 Acta Mech. Solida Sin. 31 290
|
[3] |
Christensen J and Newman J 2006 J. Electrochem. Soc. 153 A1019
|
[4] |
Zhang X, Shyy W and Sastry A M 2007 J. Electrochem. Soc. 154 A910
|
[5] |
Cheng Y T and Verbrugge M W 2009 J. Power Sources 190 453
|
[6] |
Xie H, Zhang Q, Song H, Shi B and Kang Y 2017 J. Power Sources 342 896
|
[7] |
Zhang P, Ma Z, Wang Y, Zou Y, Sun L and Lu C 2019 Mater. Chem. Phys. 222 193
|
[8] |
Song Y, Shao X, Guo Z and Zhang J 2013 J. Phys. D-Appl. Phys. 46 105307
|
[9] |
Zhang K, Li Y and Zheng B 2015 J. Electrochem. Soc. 162 A1873
|
[10] |
Liu H, Wolf M, Karki K, Yu Y S, Stach E A, Cabana J, Chapman K W and Chupas P J 2017 Nano Lett. 17 3452
|
[11] |
Xia S, Mu L, Xu Z, Wang J, Wei C, Liu L, Pianett P, Zhao K, Yu X, Lin F and Liu Y 2018 Nano Energy 53 753
|
[12] |
Lee S H, Yoon C S, Amine K and Sun Y K 2013 J. Power Sources 234 201
|
[13] |
Kim H, Kim M G, Jeong H Y, Nam H and Cho J 2015 Nano Lett. 15 2111
|
[14] |
Wang D Y, Wu X D, Wang Z X and Chen L Q 2005 J. Power Sources 140 125
|
[15] |
Swallow J G, Woodford W H, McGrogan F P, Ferralis N, Chiang Y M and Van Vliet K J 2014 J. Electrochem. Soc. 161 F3084
|
[16] |
Xiao X, Liu P, Verbrugge M W, Haftbaradaran H and Gao H 2011 J. Power Sources 196 1409
|
[17] |
Cabana J, Monconduit L, Larcher D and Palacín M R 2010 Adv. Mater. 22 E170
|
[18] |
Zhang W J 2011 J. Power Sources 196 877
|
[19] |
Liu N, Hu L B, McDowell M T, Jackson A and Cui Y 2011 ACS Nano 5 6487
|
[20] |
Ren Z M, Zhang X H, Liu M, Zhou J J, Sun S, He H Y and Wang D Y 2019 J. Power Sources 416 104
|
[21] |
Lin Y X, Liu Z, Leung K, Chen L Q, Lu P and Qi Y 2016 J. Power Sources 309 221
|
[22] |
Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
|
[23] |
Riege B, Erhard S V, Kosch S, Venator M, Rheinfeld A and Jossen A 2016 J. Electrochem. Soc. 163 A3099
|
[24] |
Lee S, Sastry A M and Park J 2016 J. Power Sources. 315 96
|
[25] |
Doyle M, Fuller T F and Newman J 1993 J. Electrochem. Soc. 140 1526
|
[26] |
Doyle M, Newman J, Gozdz A S, Schmutz C N and Tarascon J M 1996 J. Electrochem. Soc. 143 1890
|
[27] |
Li D, Wang Y, Hu J, Lu B, Dang D, Zhang J and Cheng Y T 2018 J. Power Sources 387 9
|
[28] |
Li Y, Lu B, Guo B, Song Y and Zhang J 2019 Electrochim. Acta 295 778
|
[29] |
Chon M J, Sethuraman V A, Mc Cormick A, Srinivasan V and Guduru P R 2011 Phys. Rev. Lett. 107 045503
|
[30] |
Mukhopadhyay A, Tokranov A, Sena K, Xiao X and Sheldon B W 2011 Carbon 49 2742
|
[31] |
Wang Y, Dang D, Li D, Hu J, Zhan X and Cheng Y T 2019 J. Power Sources 438 226938
|
[32] |
Song Y, Lu B, Ji X and Zhang J 2012 J. Electrochem. Soc. 159 A2060
|
[33] |
Li J, Dozier A K, Li Y, Yang F and Cheng Y T 2011 J. Electrochem. Soc. 158 A689
|
[34] |
Tariq F, Yufit V, Eastwood D S, Merla Y, Biton M, Wu B, Chen Z, Freedman K, Offer G, Peled E, Lee P D, Golodnitsky D and Brandon N 2014 ECS Electrochem. Lett. 3 A76
|
[35] |
Zhao C, Wada T, De Andrade V, Gürsoy D, Kato H and Chen-Wiegart Y K 2018 Nano Energy 52 381
|
[36] |
Beaulieu L Y, Eberman K W, Turner R L, Krause L J and Dahn J R 2001 Electrochem. Solid-State Lett. 4 A137
|
[37] |
Wang Y H, He Y, Xiao R J, Li H, Aifantis K E and Huang X J 2012 J. Power Sources 202 236
|
[38] |
Yang F 2011 J. Power Sources 196 465
|
[39] |
Huggins R A and Nix W D 2000 Ionics 6 57
|
[40] |
Haftbaradaran H and Gao H 2012 Appl. Phys. Lett. 100 121907
|
[41] |
Haruta M, Doi T and Inaba M 2019 J. Electrochem. Soc. 166 A258
|
[42] |
Liu X H, Wang J W, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh S A, Davydov A V, Mao S X, Picraux S T, Zhang S, Li J, Zhu T and Huang J Y 2012 Nat. Nanotechnol. 7 749
|
[43] |
Wang J W, He Y, Fan F, Liu X H, Xia S, Liu Y, Harris C T, Li H, Huang J Y, Mao S X and Zhu T 2013 Nano Lett. 13 709
|
[44] |
Obrovac M N and Christensen L 2004 Electrochem. Solid-State Lett. 7 A93
|
[45] |
McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C, Nix W D and Cui Y 2013 Nano Lett. 13 758
|
[46] |
Pharr M, Suo Z and Vlassak J J 2013 Nano Lett. 13 5570
|
[47] |
Pharr M, Choi Y S, Lee D, Oh K H and Vlassak J J 2016 J. Power Sources 304 164
|
[48] |
Choi Y S, Pharr M, Oh K H and Vlassak J J 2015 J. Power Sources 294 159
|
[49] |
Wolfenstine J, Foster D, Read J, Behl W K and Luecke W 2000 J. Power Sources 87 1
|
[50] |
Gabrisch H, Wilcox J and Doeff M M 2008 Electrochem. Solid-State Lett. 11 A25
|
[51] |
McGrogan F P, Raja S N, Chiang Y M and Van Vliet K J 2018 J. Electrochem. Soc. 165 A2458
|
[52] |
Lee S W, Lee H W, Ryu I, Nix W D, Gao H and Cui Y 2015 Nat. Commun. 6 7533
|
[53] |
Park K J, Hwang J Y, Ryu H H, Maglia F, Kim S J, Lamp P, Yoon C S and Sun Y K 2019 ACS Energy Lett. 4 1394
|
[54] |
Liu X H, Zhong L, Huang S, Mao S X, Zhu T and Huang J Y 2012 ACS Nano. 6 1522
|
[55] |
Rahani E K and Shenoy V B 2013 J. Electrochem. Soc. 160 A1153
|
[56] |
Mendoza H, Roberts S A, Brunini V E and Grillet A M 2016 Electrochim. Acta. 190 1
|
[57] |
Jäckel N, Dargel V, Shpigel N, Sigalov S, Levi M D, Daikhin L, Aurbach D and Presser V 2017 J. Power Sources 371 162
|
[58] |
Li J, Lewis R B and Dahn J R 2007 Electrochem. Solid-State Lett. 10 A17
|
[59] |
Zhao K, Pharr M, Hartle L, Vlassak J J and Suo Z 2012 J. Power Sources 218 6
|
[60] |
Lee S, Yang J and Lu W 2016 Extreme Mech. Lett. 6 37
|
[61] |
Ma Y, Ma J and Cui G 2019 Energy Storage Mater. 20 146
|
[62] |
Fan J and Zhang J 1993 Compos. Sci. Technol. 47 107
|
[63] |
Zhang J and Herrmann K P 1999 Compos. Pt. A-Appl. Sci. Manuf. 30 683
|
[64] |
Winter M and Besenhard J O 1999 Electrochim. Acta 45 31
|
[65] |
Besenhard J O, Yang J and Winter M 1997 J. Power Sources 68 87
|
[66] |
Winter M, Besenhard J O, Spahr M E and Novák P 1998 Adv. Mater. 10 725
|
[67] |
Yang J, Winter M and Besenhard J O 1996 Solid State Ion. 90 281
|
[68] |
Zhao Y, Wang J, He Q, Shi J, Zhang Z, Men X, Yan D and Wang H 2019 ACS Nano. 13 5602
|
[69] |
Lee B S, Wu Z, Petrova V, Xing X, Lim H D, Liu H and Liu P 2018 J. Electrochem. Soc. 165 A525
|
[70] |
Du Z, Rollag K M, Li J, An S J, Wood M, Sheng Y, Mukherjee P P, Daniel C and Wood D L I I I 2017 J. Power Sources 354 200
|
[71] |
Vanpeene V, King A, Maire E and Roué L 2019 Nano Energy 56 799
|
[72] |
Vanpeene V, Etiemble A, Bonnin A, Maire E and Roué L 2017 J. Power Sources 350 18
|
[73] |
Vanpeene V, Villanova J, King A, Lestriez B, Maire E and Roué L 2019 Adv. Energy Mater. 9 1803947
|
[74] |
Hernandez C R, Etiemble A, Douillard T, Mazouzi D, Karkar Z, Maire E, Guyomard D, Lestriez B and Roué L 2018 Adv. Energy Mater 8 1701787
|
[75] |
Mughal M Z, Moscatelli R, Amanieu H Y and Sebastiani M 2016 Scr. Mater. 116 62
|
[76] |
Qu M, Woodford W H, Maloney J M, Carter W C, Chiang Y M and Van Vliet K J 2012 Adv. Energy Mater. 2 940
|
[77] |
Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C and Hammouche A 2005 J. Power Sources 147 269
|
[78] |
Su X, Guo K, Ma T, Tamirisa P A, Ye H, Gao H and Sheldon B W 2017 ACS Energy Lett. 2 1729
|
[79] |
Zhang S, Zhao K, Zhu T and Li J 2017 Prog. Mater. Sci. 89 479
|
[80] |
Choi S, Kwon T, Coskun A and Choi J 2017 Science 357 279
|
[81] |
Yan G, Nonemacher J F, Zheng H, Finsterbusch M, Malzbender J and Krüger M 2019 J. Mater. Sci. 54 5671
|
[82] |
Yang L, Chen H S, Jiang H, Wei Y J, Song W L and Fang D N 2018 Chem. Commun. 54 3997
|
[83] |
Maranchi J P, Hepp A F and Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198
|
[84] |
Yang L, Chen H S, Song W L and Fang D 2018 ACS Appl. Mater. Int. 10 43623
|
[85] |
Park M, Zhang X, Chung M and Less G B 2010 J. Power Sources 195 7904
|
[86] |
Xu J, Zhang Q and Cheng Y T 2016 J. Electrochem. Soc. 163 A401
|
[87] |
Rollag K, Juarez-Robles D, Du Z, Wood D L I I I and Mukherjee P P 2019 ACS Appl. Energy Mater. 2 4464
|
[88] |
Yang L, Chen H S, Jiang H, Song W L and Fang D 2019 Scr. Mater. 167 11
|
[89] |
Zhang J, Lu Y, He L, Yang L and Ni Y 2017 Eng. Fract. Mech. 177 123
|
[90] |
Réthoré J, Zheng H, Li H, Li J and Aifantis K E 2018 J. Power Sources 400 383
|
[91] |
Mohanty D, Hockaday E, Li J, Hensley D K, Daniel C and Wood III D L 2016 J. Power Sources 312 70
|
[92] |
Yang L, Chen H S, Song W L and Fang D 2018 J. Power Sources 405 101
|
[93] |
Chew H B, Hou B, Wang X and Xia S 2014 Int. J. Solids Struct. 51 4176
|
[94] |
Ding B, Li X Y, Zhang X, Wu H, Xu Z P and Gao H J 2015 Nano Energy 18 89
|
[95] |
Khosrownejad S M and Curtin W A 2017 J. Mech. Phys. Solids. 107 542
|
[96] |
Lu B, Song Y, Guo Z and Zhang J 2013 Int. J. Solids Struct. 50 2495
|
[97] |
He Y, Wang Y, Yu X, Li H and Huang X 2012 J. Electrochem. Soc. 159 A2076
|
[98] |
Sengupta S, Mitra A, Dahiya P P, Kumar A, Mallik M, Das K, Majumder S B and Das S 2017 J. Alloy. Compd. 721 236
|
[99] |
He Y, Yu X, Li G, Wang R, Li H, Wang Y, Gao H and Huang X 2012 J. Power Sources 216 131
|
[100] |
Kim J H, Woo S C, Park M S, Kim K J, Yim T, Kim J S and Kim Y J 2013 J. Power Sources 229 190
|
[101] |
Yoon T, Park S, Mun J, Ryu J H, Choi W, Kang Y S, Park J H and Oh S M 2012 J. Power Sources 215 312
|
[102] |
Guo Z, Zhou L and Yao H 2019 Mater. 177 107851
|
[103] |
Hutchinson J W and Suo Z 1991 Adv. Appl. Mech. 29 63
|
[104] |
Hu J, Wang Y, Li D and Cheng Y T 2018 J. Power Sources 397 223
|
[105] |
Guo Z, Liu C, Lu B and Feng J 2019 Carbon 150 32
|
[106] |
Hao F and Mukherjee P P 2018 J. Electrochem. Soc. 165 A1857
|
[107] |
Ma J, Chen B, Wang L and Cui G 2018 J. Power Sources 392 94
|
[108] |
Tian H K and Qi Y 2017 J. Electrochem. Soc. 164 E3512
|
[109] |
Glenneberg J, Kasiri G, Bardenhagen I, Mantia F L, Busse M and Kun R 2019 Nano Energy 57 549
|
[110] |
Taheri P, Hsieh S and Bahrami M 2011 J. Power Sources 196 6525
|
[111] |
Zhang W, Cai T H and Sheldon B W 2019 Adv. Energy Mater. 9 1803066
|
[112] |
Basu S, Suresh S, Ghatak K, Bartolucci S F, Gupta T, Hundekar P, Kumar R, Lu T M, Datta D, Shi Y and Koratkar N 2018 ACS Appl. Mater. Interfaces 10 13442
|
[113] |
Stournara M E, Xiao X, Qi Y, Johari P, Lu P, Sheldon B W, Gao H and Shenoy V B 2013 Nano Lett. 13 4759
|
[114] |
Haftbaradaran H, Xiao X, Verbrugge M W and Gao H 2012 J. Power Sources 206 357
|
[115] |
Haftbaradaran H 2015 J. Power Sources 288 278
|
[116] |
Haftbaradaran H 2015 Procedia Mater. Sci. 11 459
|
[117] |
Guo K, Tamirisa P A, Sheldon B W, Xiao X and Gao H 2018 J. Electrochem. Soc. 165 A618
|
[118] |
Lang J L, Ding B, Zhang S, Su H X, Ge B H, Qi L H, Gao H J, Li X Y, Li Q Y and Wu H 2017 Adv. Mater. 29 1701777
|
[119] |
Pal S, Damle S S, Patel S H, Datta M K, Kumta P N and Maiti S 2014 J. Power Sources 246 149
|
[120] |
Liu M 2015 Int. J. Solids Struct. 67-68 263
|
[121] |
Liu M, Gao C and Yang F 2017 Model. Simul. Mater. Sci. Eng. 25 065019
|
[122] |
Wen J, Wei Y and Cheng Y T 2018 J. Mech. Phys. Solids 116 403
|
[123] |
Lu B, Song Y C, Guo Z S and Zhang J Q 2013 Acta Mech. Sin. 29 348
|
[124] |
Lu B, Song Y and Zhang J 2015 J. Power Sources 289 168
|
[125] |
Liu M, Lu B, Shi D L and Zhang J Q 2018 Acta Mech. Sin. 34 359
|
[126] |
Lu B, Zhao Y, Song Y and Zhang J 2016 J. Appl. Mech. 83 121009
|
[127] |
Lu B, Ning C, Zhao Y, Song Y and Zhang J 2019 J. Appl. Mech. 86 101006
|
[128] |
Tvergaard V and Hutchinson J W 1992 J. Mech. Phys. Solids. 40 1377
|
[129] |
Alfano G 2006 Compos. Sci. Technol. 66 723
|
[130] |
Yan Y and Shang F 2009 Int. J. Solids Struct. 46 2739
|
[131] |
Myung S T, Hitoshi Y and Sun Y K 2011 J. Mater. Chem. A 21 9891
|
[132] |
Braithwaite J W, Gonzales A, Nagasubramanian G, Lucero S J, Peebles D E, Ohlhausen J A and Cieslak W R 1999 J. Electrochem. Soc. 146 448
|
[133] |
Yang H, Kwon K, Devine T M and Evans J W 2000 J. Electrochem. Soc. 147 4399
|
[134] |
Zhang S S and Jow T R 2002 J. Power Sources 109 458
|
[135] |
Garcia B and Armand M 2004 J. Power Sources 132 206
|
[136] |
Guo M Q, Meng W J, Zhang X G, Bai Z C, Wang G W, Wang Z H and Yang F Q 2019 J. Electron. Mater. 48 7543
|
[137] |
Sahraei E, Campbell J and Wierzbicki T 2012 J. Power Sources 220 360
|
[138] |
Lamb J and Orendorff C J 2014 J. Power Sources 247 189
|
[139] |
Wang H, Lara-Curzio E, Rule E T and Winchester C S 2017 J. Power Sources 342 913
|
[140] |
Wang Q, Ping P, Zhao X, Chu G, Sun J and Chen C 2012 J. Power Sources 208 210
|
[141] |
Luo H, Xia Y and Zhou Q 2017 J. Power Sources 357 61
|
[142] |
Song Y, Li Z and Zhang J 2014 J. Power Sources 263 22
|
[143] |
Bonatti C and Mohr D 2016 Mater. Sci. Eng. A-Struct. Mater. Prop. 654 329
|
[144] |
Wang H, Watkins T R, Simunovic S, Bingham P R, Allu S and Turner J A 2017 J. Power Sources 364 432
|
[145] |
Zhu J, Zhang X, Sahraei E and Wierzbicki T 2016 J. Power Source 336 332
|
[146] |
Zhu Z, Hu H, He Y and Tao B 2018 Compos. Struct. 204 822
|
[147] |
Tarascon J M and Armand M 2001 Nature 414 359
|
[148] |
Xu K 2004 Chem. Rev. 104 4303
|
[149] |
Xu W, Wang J, Ding F and Chen X 2014 Energy Environ. Sci. 7 513
|
[150] |
Guan X, Wang A, Liu S, Li G, Liang F, Yang Y W, Liu X and Luo J 2018 Small 14 1801423
|
[151] |
Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O and Zhang J G 2015 Nat. Commun. 6 6362
|
[152] |
Yang C P, Yin Y X, Zhang S F, Li N W and Guo Y G 2015 Nat. Commun. 6 8058
|
[153] |
Wang P, Qu W, Song W L, Chen H, Chen R and Fang D 2019 Adv. Funct. Mater. 29 1900950
|
[154] |
Shi Q, Zhong Y, Wu M, Wang H and Wang H 2018 Proc. Natl. Acad. Sci. 115 5676
|
[155] |
Chen Y, Luo Y, Zhang H, Qu C, Zhang H and Li X 2019 Small Methods 3 1800551
|
[156] |
Zhu R, Feng J and Guo Z 2019 J. Electrochem. Soc. 166 A1107
|
[157] |
Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S and Koratkar N 2018 Science 359 1513
|
[158] |
Wang X, Zeng W, Hong L, Xu W, Yang H, Wang F, Duan H, Tang M and Jiang H 2018 Nat. Energy 3 227
|
[159] |
Yulaev A, Oleshko V, Haney P, Liu J, Qi Y, Talin A A, Leite M S and Kolmakov A 2018 Nano Lett. 18 1644
|
[160] |
Monroe C and Newman J 2003 J. Electrochem. Soc. 150 A1377
|
[161] |
Rosso M, Chassaing E, Chazalviel J N and Gobron T 2002 Electrochim. Acta 47 1267
|
[162] |
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J and Zhang J G 2013 J. Am. Chem. Soc. 135 4450
|
[163] |
Gireaud L, Grugeon S, Laruelle S, Yrieix B and Tarascon J M 2006 Electrochem. Commun. 8 1639
|
[164] |
Liu Y, Liu Q, Xin L, Liu Y, Yang F, Stach E A and Xie J 2017 Nat. Energy 2 17083
|
[165] |
Varias A G, Suo Z and Shih C F 1991 J. Mech. Phys. Solids. 39 963
|
[166] |
Klein M, Hadrboletz A, Weiss B and Khatibi G 2001 Mater. Sci. Eng. A-Struct. Mater. Prop 319 924
|
[167] |
Wang H W, Kang Y L, Zhang Z F and Qin Q H 2003 Int. J. Fract. 123 177
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|