|
|
Generalized Hardy-type tests for hierarchy of multipartite non-locality |
Fei Yang(杨飞)1,2, Yu Yuan(袁毓)1, Wen-Lu Lin(林文璐)1, Shu-Ao Liao(廖书傲)1,2, Cheng-Jie Zhang(张成杰)3, Qing Chen(陈清)1,2 |
1 School of Physics and Astronomy, Yunnan University, Kunming 650500, China; 2 Key Laboratory of Quantum Information of Yunnan Province, Kunming 650500, China; 3 College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China |
|
|
Abstract We propose a family of Hardy-type tests for an arbitrary n-partite system, which can detect different degrees of non-locality ranging from standard to genuine multipartite non-locality. For any non-signaling m-local hidden variable model, the corresponding tests fail, whereas a pass of this type of test indicates that this state is m non-local. We show that any entangled generalized GHZ state exhibits Hardy's non-locality for each rank of multipartite non-locality. Furthermore, for the detection of m non-localities, a family of Bell-type inequalities based on our test is constructed. Numerical results show that it is more efficient than the inequalities proposed in[Phys. Rev. A 94 022110 (2016)].
|
Received: 13 August 2019
Revised: 18 October 2019
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575155, 11504253, and 11734015) and the Major Science and Technology Project of Yunnan Province, China (Grant No. 2018ZI002). |
Corresponding Authors:
Qing Chen
E-mail: chenqing@ynu.edu.cn
|
Cite this article:
Fei Yang(杨飞), Yu Yuan(袁毓), Wen-Lu Lin(林文璐), Shu-Ao Liao(廖书傲), Cheng-Jie Zhang(张成杰), Qing Chen(陈清) Generalized Hardy-type tests for hierarchy of multipartite non-locality 2019 Chin. Phys. B 28 120306
|
[1] |
Bell J S 1964 Physics 1 195
|
[2] |
Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
|
[3] |
Hensen B, Bernien H, DrÉAu A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L and Schouten R N 2015 Nature 526 682
|
[4] |
Giustina M, Versteegh M A M, Wengerowsky S, Handsteiner J, Hochrainer A and Kevin P 2015 Phys. Rev. Lett. 115 250401
|
[5] |
Shalm L K, Meyer-Scott E, Christensen B G and Bierhorst P 2015 Phys. Rev. Lett. 115 250402
|
[6] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[7] |
Barrett J, Hardy L and Kent A 2005 Phys. Rev. Lett. 95 010503
|
[8] |
Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
|
[9] |
Buhrman H, Cleve R, Massar S and de Wolf R 2010 Rev. Mod. Phys. 82 665
|
[10] |
Pironio S, Acín A, Massar S and Boyer de la Giroday A 2010 Nature 464 1021
|
[11] |
Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
|
[12] |
Hardy L 1993 Phys. Rev. Lett. 71 1665
|
[13] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[14] |
Mermin N D 1990 Phys. Rev. Lett. 65 1838
|
[15] |
Mermin N D 1990 Phys. Rev. Lett. 65 3373
|
[16] |
Ardehali M 1992 Phys. Rev. A 46 5375
|
[17] |
Belinskii A V and Klyshko D N 1993 Phys. Usp. 36 653
|
[18] |
Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112
|
[19] |
Żukowski M, Brukner Č, Laskowski W and Wieśniak M 2002 Phys. Rev. Lett. 88 210402
|
[20] |
Svetlichny G 1987 Phys. Rev. D 35 3066
|
[21] |
Seevinck M and Svetlichny G 2002 Phys. Rev. Lett. 89 060401
|
[22] |
Chen J L, Deng D L, Su H Y, Wu C and Oh C H 2011 Phys. Rev. A 83 022316
|
[23] |
Wang X, Zhang C, Chen A, Yu S, Yuan H and Oh C H 2016 Phys. Rev. A 94 022110
|
[24] |
Cereceda J L 2004 Phys. Lett. A 327 433
|
[25] |
Jiang S Y, Xu Z P, Su H Y, Pati A K and Chen J L 2018 Phys. Rev. Lett. 120 050403
|
[26] |
Luo Y H, Su H Y, Huang H L, Wang X L and Yang T 2018 Science Bulletin 63 1611
|
[27] |
Chen Q, Yu S, Zhang C, Lai C H and Oh C H 2014 Phys. Rev. Lett. 112 140404
|
[28] |
Zhang C, Huang Y F, Zhang C J, Wang J, Liu B H, Li C F and Guo G C 2016 Opt. Express 24 27059
|
[29] |
Rahaman R, Wieśniak M and Żukowski M 2014 Phys. Rev. A 90 062338
|
[30] |
Xiang Y 2011 Chin. Phys. B 20 060301
|
[31] |
Mukherjee A, Roy A, Bhattacharya S S, Das S, Gazi M R and Banik M 2015 Phys. Rev. A 92 022302
|
[32] |
Fedrizzi A, Almeida M P, Broome M A, White A G and Barbieri M 2011 Phys. Rev. Lett. 106 200402
|
[33] |
Li H W, Pawlowski M, Rahaman R, Guo G C and Han Z F 2015 Phys. Rev. A 92 022327
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|