Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120306    DOI: 10.1088/1674-1056/ab54b8
GENERAL Prev   Next  

Generalized Hardy-type tests for hierarchy of multipartite non-locality

Fei Yang(杨飞)1,2, Yu Yuan(袁毓)1, Wen-Lu Lin(林文璐)1, Shu-Ao Liao(廖书傲)1,2, Cheng-Jie Zhang(张成杰)3, Qing Chen(陈清)1,2
1 School of Physics and Astronomy, Yunnan University, Kunming 650500, China;
2 Key Laboratory of Quantum Information of Yunnan Province, Kunming 650500, China;
3 College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
Abstract  We propose a family of Hardy-type tests for an arbitrary n-partite system, which can detect different degrees of non-locality ranging from standard to genuine multipartite non-locality. For any non-signaling m-local hidden variable model, the corresponding tests fail, whereas a pass of this type of test indicates that this state is m non-local. We show that any entangled generalized GHZ state exhibits Hardy's non-locality for each rank of multipartite non-locality. Furthermore, for the detection of m non-localities, a family of Bell-type inequalities based on our test is constructed. Numerical results show that it is more efficient than the inequalities proposed in[Phys. Rev. A 94 022110 (2016)].
Keywords:  Hardy paradox      Bell non-locality      multipartite non-locality  
Received:  13 August 2019      Revised:  18 October 2019      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575155, 11504253, and 11734015) and the Major Science and Technology Project of Yunnan Province, China (Grant No. 2018ZI002).
Corresponding Authors:  Qing Chen     E-mail:  chenqing@ynu.edu.cn

Cite this article: 

Fei Yang(杨飞), Yu Yuan(袁毓), Wen-Lu Lin(林文璐), Shu-Ao Liao(廖书傲), Cheng-Jie Zhang(张成杰), Qing Chen(陈清) Generalized Hardy-type tests for hierarchy of multipartite non-locality 2019 Chin. Phys. B 28 120306

[1] Bell J S 1964 Physics 1 195
[2] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[3] Hensen B, Bernien H, DrÉAu A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L and Schouten R N 2015 Nature 526 682
[4] Giustina M, Versteegh M A M, Wengerowsky S, Handsteiner J, Hochrainer A and Kevin P 2015 Phys. Rev. Lett. 115 250401
[5] Shalm L K, Meyer-Scott E, Christensen B G and Bierhorst P 2015 Phys. Rev. Lett. 115 250402
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661
[7] Barrett J, Hardy L and Kent A 2005 Phys. Rev. Lett. 95 010503
[8] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[9] Buhrman H, Cleve R, Massar S and de Wolf R 2010 Rev. Mod. Phys. 82 665
[10] Pironio S, Acín A, Massar S and Boyer de la Giroday A 2010 Nature 464 1021
[11] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[12] Hardy L 1993 Phys. Rev. Lett. 71 1665
[13] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[14] Mermin N D 1990 Phys. Rev. Lett. 65 1838
[15] Mermin N D 1990 Phys. Rev. Lett. 65 3373
[16] Ardehali M 1992 Phys. Rev. A 46 5375
[17] Belinskii A V and Klyshko D N 1993 Phys. Usp. 36 653
[18] Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112
[19] Żukowski M, Brukner Č, Laskowski W and Wieśniak M 2002 Phys. Rev. Lett. 88 210402
[20] Svetlichny G 1987 Phys. Rev. D 35 3066
[21] Seevinck M and Svetlichny G 2002 Phys. Rev. Lett. 89 060401
[22] Chen J L, Deng D L, Su H Y, Wu C and Oh C H 2011 Phys. Rev. A 83 022316
[23] Wang X, Zhang C, Chen A, Yu S, Yuan H and Oh C H 2016 Phys. Rev. A 94 022110
[24] Cereceda J L 2004 Phys. Lett. A 327 433
[25] Jiang S Y, Xu Z P, Su H Y, Pati A K and Chen J L 2018 Phys. Rev. Lett. 120 050403
[26] Luo Y H, Su H Y, Huang H L, Wang X L and Yang T 2018 Science Bulletin 63 1611
[27] Chen Q, Yu S, Zhang C, Lai C H and Oh C H 2014 Phys. Rev. Lett. 112 140404
[28] Zhang C, Huang Y F, Zhang C J, Wang J, Liu B H, Li C F and Guo G C 2016 Opt. Express 24 27059
[29] Rahaman R, Wieśniak M and Żukowski M 2014 Phys. Rev. A 90 062338
[30] Xiang Y 2011 Chin. Phys. B 20 060301
[31] Mukherjee A, Roy A, Bhattacharya S S, Das S, Gazi M R and Banik M 2015 Phys. Rev. A 92 022302
[32] Fedrizzi A, Almeida M P, Broome M A, White A G and Barbieri M 2011 Phys. Rev. Lett. 106 200402
[33] Li H W, Pawlowski M, Rahaman R, Guo G C and Han Z F 2015 Phys. Rev. A 92 022327
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[5] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[6] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[7] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[12] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[15] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
No Suggested Reading articles found!