|
|
Improving entanglement of assistance bylocal parity-time symmetric operation |
Zhi He(贺志)1, Zun-Yan Nie(聂尊言)1, Qiong Wang(王琼)2 |
1 Hunan Province Cooperative Innovation Center for The Construction and Development of Dongting Lake Ecological Economic Zone, College of Mathematics and Physics Science, Hunan University of Arts and Science, Changde 415000, China; 2 Department of Junior Education, Changsha Normal University, Changsha 410100, China |
|
|
Abstract We investigate entanglement of assistance without and with decoherence using a local non-Hermitian operation, i.e., parity-time (PT) symmetric operation. First we give the explicit expressions of entanglement of assistance for a general W-like state of a three-qubit system under a local parity-time symmetric operation. Then for a famous W state without decoherence, we find that entanglement of assistance shared by two parties can be obviously enhanced with the assistance of the third party by a local parity-time symmetric operation. For the decoherence case, we provide two schemes to show the effects of local parity-time symmetric operation on improvement of entanglement of assistance against amplitude damping noise. We find that for the larger amplitude damping case the scheme of PT symmetric operation performed on one of two parties with the influence of noise is superior to that of PT symmetric operation performed on the third party without the influence of noise in suppressing amplitude damping noise. However, for the smaller amplitude damping case the opposite result is given. The obtained results imply that the local PT symmetric operation method may have potential applications in quantum decoherence control.
|
Received: 08 August 2019
Revised: 13 October 2019
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.65.Ca
|
(Formalism)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 2017M622582), the Natural Science Foundation of Hunan Province of China (Grant No. 2015JJ3092), the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16B177), Applied Characteristic Disciplines in Hunan Province-Electronic Science and Technology of China, and Hunan-Provincial Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology. |
Corresponding Authors:
Zhi He
E-mail: hz9209@126.com
|
Cite this article:
Zhi He(贺志), Zun-Yan Nie(聂尊言), Qiong Wang(王琼) Improving entanglement of assistance bylocal parity-time symmetric operation 2019 Chin. Phys. B 28 120305
|
[33] |
Hughston L P, Jozsa R and Wootters W K 1993 Phys. Lett. A 183 14
|
[1] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
[34] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[2] |
Longhi S 2010 Phys. Rev. Lett. 105 013903
|
[35] |
Laustsen T, Verstraete F and van Enk S J 2003 Quantum Inf. Comput. 3 64
|
[3] |
Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101
|
[36] |
Yao C, Ma Z H, Chen Z H and Serafini A 2012 Phys. Rev. A 86 022312
|
[4] |
Zhen C, Hao L and Long G L 2013 Philos. Trans. R. Soc. A 371 20120053
|
[37] |
Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
|
[5] |
Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
|
[38] |
Li J G, Zou J and Shao B 2010 Phys. Rev. A 82 042318
|
[6] |
Zhang Z, Zhang Y, Sheng J, Yang L, Miri M A, Christodoulides D N, He B, Zhang Y and Xiao M 2016 Phys. Rev. Lett. 117 123601
|
[39] |
Eibl M, Kiesel N, Bourennane M, Kurtsiefer C and Weinfurter H 2004 Phys. Rev. Lett. 92 077901
|
[7] |
Zhang Z, Yang L, Feng J, Sheng J, Zhang Y, Zhang Y and Xiao M 2018 Laser Photon. Rev. 12 1800155
|
[40] |
Zhang D, Li C, Zhang Z, Zhang Y, Zhang Y and Xiao M 2017 Phys. Rev. A 96 043847
|
[8] |
Deffner S and Saxena A 2015 Phys. Rev. Lett. 114 150601
|
[41] |
Li C, Jiang Z, Zhang Y, Zhang Z, Wen F, Chen H, Zhang Y and Xiao M 2017 Phys. Rev. Appl. 7 014023
|
[9] |
Gardas B, Deffner S and Saxena A 2016 Sci. Rep. 6 23408
|
[10] |
Zeng M and Yong E H 2017 J. Phys. Commun. 1 031001
|
[11] |
Wei B B 2018 Phys. Rev. A 97 012114
|
[12] |
Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
|
[13] |
Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
|
[14] |
Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
|
[15] |
Zhang S Y, Fang M F, Zhang Y L, Guo Y N, Zhao Y J and Tang W W 2015 Chin. Phys. B 24 090304
|
[16] |
Guo Y N, Fang M F, Wang G Y, Huang J and Zeng K 2017 Quantum Inf. Process. 16 301
|
[17] |
Zhang S Y, Fang M F and Xu L 2017 Quantum Inf. Process. 16 234
|
[18] |
Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
|
[19] |
Wang Y Y and Fang M F 2018 Quantum Inf. Process. 17 208
|
[20] |
Wang L F, Du M M, Sun W Y, Wang D and Ye L 2019 Laser Phys. Lett. 16 055204
|
[21] |
Gardas B, Deffner S and Saxena A 2016 Phys. Rev. A 94 040101(R)
|
[22] |
Cohen O 1998 Phys. Rev. Lett. 80 2493
|
[23] |
DiVincenzo D P, Fuchs C A, Mabuchi Ha, Smolin J A, Thapliyal A and Uhlmann A 1999 Entanglement Assistance in Lect. Notes Comput. Sci. (Berlin: Springer-Verlag) Vol. 1509 p. 247
|
[24] |
Popp M, Verstraete F, Martin-Delgado M A and Cirac J I 2005 Phys. Rev. A 71 042306
|
[25] |
Gour G, Meyer D A and Sanders B C 2005 Phys. Rev. A 72 042329
|
[26] |
Yu C S and Song H S 2008 Phys. Rev. A 77 032329
|
[27] |
Li Z G, Zhao M J, Fei S M and Liu W M 2010 Phys. Rev. A 81 042312
|
[28] |
Chi D P, Jeong K, Kim T, Lee K and Lee S 2010 Phys. Rev. A 81 044302
|
[29] |
Kim J S 2012 Phys. Rev. A 85 032335
|
[30] |
Song W, Zhao J L, Yu L B and Zhang L H 2010 Phys. Rev. A 81 044302
|
[31] |
Song W, Yang M, Zhao J L, Li D C and Cao Z L 2019 Quantum Inf. Process. 18 26
|
[32] |
Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
|
[33] |
Hughston L P, Jozsa R and Wootters W K 1993 Phys. Lett. A 183 14
|
[34] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[35] |
Laustsen T, Verstraete F and van Enk S J 2003 Quantum Inf. Comput. 3 64
|
[36] |
Yao C, Ma Z H, Chen Z H and Serafini A 2012 Phys. Rev. A 86 022312
|
[37] |
Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
|
[38] |
Li J G, Zou J and Shao B 2010 Phys. Rev. A 82 042318
|
[39] |
Eibl M, Kiesel N, Bourennane M, Kurtsiefer C and Weinfurter H 2004 Phys. Rev. Lett. 92 077901
|
[40] |
Zhang D, Li C, Zhang Z, Zhang Y, Zhang Y and Xiao M 2017 Phys. Rev. A 96 043847
|
[41] |
Li C, Jiang Z, Zhang Y, Zhang Z, Wen F, Chen H, Zhang Y and Xiao M 2017 Phys. Rev. Appl. 7 014023
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|