Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120305    DOI: 10.1088/1674-1056/ab50fb
GENERAL Prev   Next  

Improving entanglement of assistance bylocal parity-time symmetric operation

Zhi He(贺志)1, Zun-Yan Nie(聂尊言)1, Qiong Wang(王琼)2
1 Hunan Province Cooperative Innovation Center for The Construction and Development of Dongting Lake Ecological Economic Zone, College of Mathematics and Physics Science, Hunan University of Arts and Science, Changde 415000, China;
2 Department of Junior Education, Changsha Normal University, Changsha 410100, China
Abstract  We investigate entanglement of assistance without and with decoherence using a local non-Hermitian operation, i.e., parity-time (PT) symmetric operation. First we give the explicit expressions of entanglement of assistance for a general W-like state of a three-qubit system under a local parity-time symmetric operation. Then for a famous W state without decoherence, we find that entanglement of assistance shared by two parties can be obviously enhanced with the assistance of the third party by a local parity-time symmetric operation. For the decoherence case, we provide two schemes to show the effects of local parity-time symmetric operation on improvement of entanglement of assistance against amplitude damping noise. We find that for the larger amplitude damping case the scheme of PT symmetric operation performed on one of two parties with the influence of noise is superior to that of PT symmetric operation performed on the third party without the influence of noise in suppressing amplitude damping noise. However, for the smaller amplitude damping case the opposite result is given. The obtained results imply that the local PT symmetric operation method may have potential applications in quantum decoherence control.
Keywords:  entanglement of assistance      local parity-time symmetric operation      amplitude damping noise  
Received:  08 August 2019      Revised:  13 October 2019      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Ca (Formalism)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 2017M622582), the Natural Science Foundation of Hunan Province of China (Grant No. 2015JJ3092), the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16B177), Applied Characteristic Disciplines in Hunan Province-Electronic Science and Technology of China, and Hunan-Provincial Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology.
Corresponding Authors:  Zhi He     E-mail:  hz9209@126.com

Cite this article: 

Zhi He(贺志), Zun-Yan Nie(聂尊言), Qiong Wang(王琼) Improving entanglement of assistance bylocal parity-time symmetric operation 2019 Chin. Phys. B 28 120305

[33] Hughston L P, Jozsa R and Wootters W K 1993 Phys. Lett. A 183 14
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[34] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[2] Longhi S 2010 Phys. Rev. Lett. 105 013903
[35] Laustsen T, Verstraete F and van Enk S J 2003 Quantum Inf. Comput. 3 64
[3] Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101
[36] Yao C, Ma Z H, Chen Z H and Serafini A 2012 Phys. Rev. A 86 022312
[4] Zhen C, Hao L and Long G L 2013 Philos. Trans. R. Soc. A 371 20120053
[37] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[5] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[38] Li J G, Zou J and Shao B 2010 Phys. Rev. A 82 042318
[6] Zhang Z, Zhang Y, Sheng J, Yang L, Miri M A, Christodoulides D N, He B, Zhang Y and Xiao M 2016 Phys. Rev. Lett. 117 123601
[39] Eibl M, Kiesel N, Bourennane M, Kurtsiefer C and Weinfurter H 2004 Phys. Rev. Lett. 92 077901
[7] Zhang Z, Yang L, Feng J, Sheng J, Zhang Y, Zhang Y and Xiao M 2018 Laser Photon. Rev. 12 1800155
[40] Zhang D, Li C, Zhang Z, Zhang Y, Zhang Y and Xiao M 2017 Phys. Rev. A 96 043847
[8] Deffner S and Saxena A 2015 Phys. Rev. Lett. 114 150601
[41] Li C, Jiang Z, Zhang Y, Zhang Z, Wen F, Chen H, Zhang Y and Xiao M 2017 Phys. Rev. Appl. 7 014023
[9] Gardas B, Deffner S and Saxena A 2016 Sci. Rep. 6 23408
[10] Zeng M and Yong E H 2017 J. Phys. Commun. 1 031001
[11] Wei B B 2018 Phys. Rev. A 97 012114
[12] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[13] Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
[14] Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
[15] Zhang S Y, Fang M F, Zhang Y L, Guo Y N, Zhao Y J and Tang W W 2015 Chin. Phys. B 24 090304
[16] Guo Y N, Fang M F, Wang G Y, Huang J and Zeng K 2017 Quantum Inf. Process. 16 301
[17] Zhang S Y, Fang M F and Xu L 2017 Quantum Inf. Process. 16 234
[18] Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
[19] Wang Y Y and Fang M F 2018 Quantum Inf. Process. 17 208
[20] Wang L F, Du M M, Sun W Y, Wang D and Ye L 2019 Laser Phys. Lett. 16 055204
[21] Gardas B, Deffner S and Saxena A 2016 Phys. Rev. A 94 040101(R)
[22] Cohen O 1998 Phys. Rev. Lett. 80 2493
[23] DiVincenzo D P, Fuchs C A, Mabuchi Ha, Smolin J A, Thapliyal A and Uhlmann A 1999 Entanglement Assistance in Lect. Notes Comput. Sci. (Berlin: Springer-Verlag) Vol. 1509 p. 247
[24] Popp M, Verstraete F, Martin-Delgado M A and Cirac J I 2005 Phys. Rev. A 71 042306
[25] Gour G, Meyer D A and Sanders B C 2005 Phys. Rev. A 72 042329
[26] Yu C S and Song H S 2008 Phys. Rev. A 77 032329
[27] Li Z G, Zhao M J, Fei S M and Liu W M 2010 Phys. Rev. A 81 042312
[28] Chi D P, Jeong K, Kim T, Lee K and Lee S 2010 Phys. Rev. A 81 044302
[29] Kim J S 2012 Phys. Rev. A 85 032335
[30] Song W, Zhao J L, Yu L B and Zhang L H 2010 Phys. Rev. A 81 044302
[31] Song W, Yang M, Zhao J L, Li D C and Cao Z L 2019 Quantum Inf. Process. 18 26
[32] Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
[33] Hughston L P, Jozsa R and Wootters W K 1993 Phys. Lett. A 183 14
[34] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[35] Laustsen T, Verstraete F and van Enk S J 2003 Quantum Inf. Comput. 3 64
[36] Yao C, Ma Z H, Chen Z H and Serafini A 2012 Phys. Rev. A 86 022312
[37] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[38] Li J G, Zou J and Shao B 2010 Phys. Rev. A 82 042318
[39] Eibl M, Kiesel N, Bourennane M, Kurtsiefer C and Weinfurter H 2004 Phys. Rev. Lett. 92 077901
[40] Zhang D, Li C, Zhang Z, Zhang Y, Zhang Y and Xiao M 2017 Phys. Rev. A 96 043847
[41] Li C, Jiang Z, Zhang Y, Zhang Z, Wen F, Chen H, Zhang Y and Xiao M 2017 Phys. Rev. Appl. 7 014023
[1] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[2] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[3] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[4] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[5] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[6] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[7] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[8] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[9] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[10] Accelerate Bose-Einstein condensate by interaction
Jie-Li Qin(秦杰利). Chin. Phys. B, 2019, 28(12): 126701.
[11] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[12] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[13] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[14] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[15] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
No Suggested Reading articles found!