|
|
Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems |
I Reena1, H S Karthik2, J Prabhu Tej3, Sudha4,5,†, A R Usha Devi1,5, and A K Rajagopal5 |
1 Department of Physics, Jnanabharathi, Bangalore University, Bangalore-560056, India; 2 International Centre for Theory of Quantum Technologies, University of Gdansk, Gdansk, 80-308, Poland; 3 Department of Physics, Ramaiah University of Applied Sciences, Bangalore-560054, India; 4 Department of Physics, Kuvempu University, Shankaraghatta, Shimoga-577 451, India; 5 Inspire Institute Inc., Alexandria, Virginia, 22303, USA |
|
|
Abstract We show that violation of the variance based local sum uncertainty relation (LSUR) for angular momentum operators of a bipartite system, proposed by Hofmann and Takeuchi [Phys. Rev. A 68 032103 (2003)], reflects entanglement in the equal bipartitions of an N-qubit symmetric state with even qubits. We establish the one-to-one connection with the violation of LSUR with negativity of covariance matrix [Phys. Lett. A 364 203 (2007)] of the two-qubit reduced system of a permutation symmetric N-qubit state.
|
Received: 18 August 2021
Revised: 15 December 2021
Accepted manuscript online: 22 March 2022
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: HSK acknowledges the support of NCN, SHENG (Grant No. 2018/30/Q/ST2/00625). IR, Sudha and ARU are supported by the Department of Science and Technology, India (Grant No. DST/ICPS/QUST/Theme-2/2019). |
Corresponding Authors:
Sudha
E-mail: arss@rediffmail.com
|
Cite this article:
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems 2022 Chin. Phys. B 31 060301
|
[1] Heisenberg W 1927 Z. Phys. 43 172 [2] Kennard E H 1927 Z. Phys. 44 326 [3] Weyl H 1928 Gruppentheorie und Quantenmechanik (Leipzig: Hirzel) [4] Robertson H P 1929 Phys. Rev. 34 163 [5] Bush P, Lahti P and Werner R F 2014 Rev. Mod. Phys. 86 1261 [6] Hofmann H F and Takeuchi S 2003 Phys. Rev. A 68 032103 [7] Hofmann H F 2003 Phys. Rev. A 68 034307 [8] Gühne O 2004 Phys. Rev. Lett. 92 117903 [9] Koashi M 2006 J. Phys.: Conf. Ser. 36 98 [10] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659 [11] Hänggi E and Renner R 2010 arXiv:1009.1833 [quant-ph] [12] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506 [13] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301 [14] Karthik H S, Usha Devi A R and Rajagopal A K 2015 Phys. Rev. A 91 012115 [15] Coles P J, Berta M, Tomamichel M and Wehner S 2017 Rev. Mod. Phys. 89 015002 [16] He Q Y, Shi-Guo Peng, Drummond P D and Reid M D 2011 Phys. Rev. A 84 022107 [17] Scully M O, Englert B G and Walther H 1991 Nature 351 111 [18] Pati A K and Sahu P K 2007 Phys. Lett. A 367 177 [19] Rivas A and Luis A 2008 Phys. Rev. A 77 022105 [20] Huang Y 2012 Phys. Rev. A 86 024101 [21] Maccone L and Pati A K 2014 Phys. Rev. Lett. 113 260401 [22] Chen B and Fei S M 2015 Sci. Rep. 5 14238 [23] Shabbir S and Björk G 2016 Phys. Rev. A 93 052101 [24] Xiao Y, Jing N, Li-Jost X and Fei S M 2016 Sci. Rep. 6 23201 [25] Bagchi S and Pati A K 2016 Phys. Rev. A 94 042104 [26] Ma W, Chen B, Liu Y, Wang M, Ye X, Kong F, Shi F, Fei S M and Du J 2017 Phys. Rev. Lett. 118 180402 [27] Song Q C, Li J L, Peng G X and Qiao C F 2017 Sci. Rep. 7 44764 [28] Hubert de Guise, Maccone L, Sanders B C and Shukla N 2018 Phys. Rev. A 98 042121 [29] Giorda P, Maccone L and Riccardi A 2019 Phys. Rev. A 99 052121 [30] Busch P and Reardon-Smith O 2019 arXiv:1901.03695 [quant-ph] [31] Zheng X, Ma S and Zhang G 2020 Quantum Inf. Process. 19 116 [32] Szymański K and Życzkowski K 2020 J. Phys. A: Math. Theor. 53 015302 [33] Hirschman I I 1957 Am. J. Math. 79 152 [34] Beckner W 1975 Ann. Math. 102 159 [35] Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129 [36] Deutsch D 1983 Phys. Rev. Lett. 50 631 [37] Partovi M H 1983 Phys. Rev. Lett. 50 1883 [38] Bialynicki-Birula I 1984 Phys. Lett. A 103 253 [39] Kraus K 1987 Phys. Rev. D 35 3070 [40] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103 [41] Wehner S and Winter A 2010 New J. Phys. 12 025009 [42] Bialynicki-Birula I and Rudnicki L 2011 Statistical Complexity edited by Sen K (Dordrecht: Springer) p. 1 [43] Wang K, Zhan X, Bian Z, Li J, Zhang Y and Xue P 2016 Phys. Rev. A 93 052108 [44] Ma W, Chen B, Liu Y, Wang M, Ye X, Kong F, Shi F, Fei S M and Du J 2017 Phys. Rev. Lett. 118 180402 [45] Chen Z X, Li J L, Song Q C, Wang H, Zangi S M and Qiao C F 2017 Phys. Rev. A 96 062123 [46] Chen Z X, Wang H, Li J L, Song Q C and Qiao C F 2019 Sci. Rep. 9 5687 [47] Usha Devi A R, Uma M S, Prabhu R and Sudha 2006 Int. J. Mod. Phys. 20 1917 [48] Usha Devi A R, Uma M S, Prabhu R and Rajagopal A K 2007 Phys. Lett. A 364 203 [49] Usha Devi A R, Prabhu R and Rajagopal A K 2007 Phys. Rev. Lett. 98 060501 [50] Sorensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 409 63 [51] Korbicz J K, Cirac J I and Lewenstein M 2005 Phys. Rev. Lett. 95 259901 [52] Usha Devi A R, Uma M S, Prabhu R and Sudha 2005 J. Opt. B 7 S740 [53] Korbicz J K, Gühne O, Lewenstein M, Häffner H, Roos C F and Blatt R 2006 Phys. Rev. A 74 052319 [54] Martin J, Giraud O, Braun P A, Braun D and Bastin T 2010 Phys. Rev. A 81 062347 [55] Markham D 2011 Phys. Rev. A 83 042332 [56] Usha Devi A R, Sudha and Rajagopal A K 2012 Quantum Inf. Proc. 11 685 [57] Lamata L, López C E, Lanyon B P, Bastin T, Retamal J C and Solano E 2013 Phys. Rev. A 87 032325 [58] Neven A, Martin J and Bastin T 2018 Phys. Rev. A 98 062335 [59] Srinivasa Rao K N 1988 Rotation and Lorentz Groups for Physicists (New York: John Wiley and Sons) [60] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 [61] Akhilesh K S, Divyamani B G, Sudha, Usha Devi A R and Mallesh K S 2019 Quantum Inf. Proc. 18 144 [62] Wang X and Sanders B C 2003 Phys. Rev. A 68 012101 [63] Wang X and Molmer K 2002 Eur. Phys. J. D 18 385 [64] Usha Devi A R, Prabhu R and Rajagopal A K 2007 Phys. Rev. A 76 012322 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|