Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 090302    DOI: 10.1088/1674-1056/ab38a6
GENERAL Prev   Next  

Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay

Heng-Yun Lv(吕恒云)1, Ji-Suo Wang(王继锁)2, Xiao-Yan Zhang(张晓燕)1, Meng-Yan Wu(吴孟艳)1, Bao-Long Liang(梁宝龙)1, Xiang-Guo Meng(孟祥国)1
1 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China;
2 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  

Using the thermal-entangled state representation and the operator-ordering method, we investigate Wigner function (WF) for the squeezed negative binomial state (SNBS) and the analytical evolution law of density operator in the amplitude decay channel. The results show that the analytical WF is related to the square of the module of single-variable Hermite polynomials, which leads to a new two-variable special function and its generating function, and the parameters s and γ play opposite roles in the WF distributions. Besides, after undergoing this channel, the initial pure SNBS evolves into a new mixed state related to two operator Hermite polynomials within normal ordering, and fully loses its nonclassicality and decays to vacuum at long decay time.

Keywords:  squeezed negative binomial state      operator ordering      Wigner function      density-operator evolution      amplitude decay  
Received:  25 June 2019      Revised:  11 July 2019      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11347026) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AM03 and ZR2017MA011).

Corresponding Authors:  Xiang-Guo Meng     E-mail:  mengxiangguo1978@sina.com

Cite this article: 

Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国) Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay 2019 Chin. Phys. B 28 090302

[41] Meng X G and Xu X J 2014 Int. J. Theor. Phys. 53 1239
[1] Kimble H J 1992 Phys. Rep. 219 227
[42] Fan H Y and Jiang T F 2007 Mod. Phys. Lett. B 21 475
[2] Dodonov V V 2002 J. Opt. B:Quantum Semiclass. Opt. 4 R1
[43] Fan H Y and Xu X F 2004 Opt. Lett. 29 1048
[3] Wang S, Hou L L, Chen X F and Xu X F 2015 Phys. Rev. A 91 063832
[44] Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
[4] Sohma M and Hirota O 2003 Phys. Rev. A 68 022303
[45] Gardiner C W and Zoller P 2000 Quantum Noise, 2nd edn. (Berlin:Springer-Verlag) p. 147
[5] Barenco A, Dutch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083
[46] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[6] Ekert A 1991 Phys. Rev. Lett. 67 661
[47] Xiang S H, Zhu X X and Song K H 2018 Chin. Phys. B 27 100305
[7] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press) p. 649
[48] Wang Z, Meng X G, Li H M and Yuan H C 2014 Int. J. Mod. Phys. B 28 1450115
[8] Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104
[49] Wang J S, Meng X G and Fan H Y 2015 Chin. Phys. B 24 014203
[9] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[50] Wang J S, Meng X G and Fan H Y 2011 Chin. Phys. Lett. 28 104209
[10] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
[51] Meng Y, Wang J S and Meng X G 2011 Int. J. Theor. Phys. 50 3348
[11] Berry M V 1984 Proc. R. Soc. A 392 45
[52] Meng X G, Liu J M, Wang J S and Fan H Y 2019 Eur. Phys. J. D 73 32
[12] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[13] Agarwal G S 1992 Phys. Rev. A 45 1787
[14] Matsuo K 1990 Phys. Rev. A 41 519
[15] Wang X G and Fu H C 2000 Int. J. Theor. Phys. 39 1437
[16] Chen F and Fan H Y 2014 Chin. Phys. B 23 030304
[17] Liu T K, Wu P P, Shan C J, Liu J B and Fan H Y 2015 Chin. Phys. B 24 090302
[18] Da C, Chen Q F and Fan H Y 2014 Int. J. Theor. Phys. 53 4372
[19] Joshi A and Lawande S V 1991 J. Mod. Opt. 38 2009
[20] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 1835
[21] Xu Y J and Meng X G 2013 Int. J. Theor. Phys. 52 4155
[22] Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
[23] Song J, He R, Yuan H, Zhou J and Fan H Y 2016 Chin. Phys. Lett. 33 110302
[24] Fan H Y 2003 J. Opt. B:Quantum Semiclass. Opt. 5 R147
[25] Meng X G, Fan H Y and Wang J S 2018 Int. J. Theor. Phys. 57 1202
[26] Zhou J, Fan H Y and Song J 2017 Chin. Phys. B 26 070301
[27] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[28] Fan H Y 2008 Opt. Commun. 281 2023
[29] Meng X G, Wang Z, Wang J S and Fan H Y 2013 J. Opt. Soc. Am. B 30 1614
[30] Meng X G, Wang J S and Gao H C 2016 Int. J. Theor. Phys. 55 3630
[31] Du C X, Meng X G, Zhang R and Wang J S 2017 Chin. Phys. B 26 120301
[32] Meng X G, Wang J S, Liang B L and Du C X 2018 J. Exp. Theor. Phys. 127 383
[33] Xu X L, Li H Q and Fan H Y 2015 Chin. Phys. B 24 070306
[34] Methta C L 1967 Phys. Rev. Lett. 18 752
[35] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag) p. 21
[36] Zhang B L, Meng X G and Wang J S 2012 Chin. Phys. B 21 030304
[37] Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
[38] Glauber R J 1963 Phys. Rev. 130 2529
[39] Klauder J R 1963 J. Math. Phys. 4 1005
[40] Wang Z, Meng X G and Fan H Y 2013 J. Phys. A:Math. Theor. 46 135305
[41] Meng X G and Xu X J 2014 Int. J. Theor. Phys. 53 1239
[42] Fan H Y and Jiang T F 2007 Mod. Phys. Lett. B 21 475
[43] Fan H Y and Xu X F 2004 Opt. Lett. 29 1048
[44] Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
[45] Gardiner C W and Zoller P 2000 Quantum Noise, 2nd edn. (Berlin:Springer-Verlag) p. 147
[46] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[47] Xiang S H, Zhu X X and Song K H 2018 Chin. Phys. B 27 100305
[48] Wang Z, Meng X G, Li H M and Yuan H C 2014 Int. J. Mod. Phys. B 28 1450115
[49] Wang J S, Meng X G and Fan H Y 2015 Chin. Phys. B 24 014203
[50] Wang J S, Meng X G and Fan H Y 2011 Chin. Phys. Lett. 28 104209
[51] Meng Y, Wang J S and Meng X G 2011 Int. J. Theor. Phys. 50 3348
[52] Meng X G, Liu J M, Wang J S and Fan H Y 2019 Eur. Phys. J. D 73 32
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[3] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[4] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[5] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[6] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[7] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[8] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[9] Mutual transformations between the P–Q,Q–P, and generalized Weyl ordering of operators
Xu Xing-Lei (徐兴磊), Li Hong-Qi (李洪奇), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030305.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[12] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[13] A generalized Weyl–Wigner quantization scheme unifying PQ and QP ordering and Weyl ordering of operators
Wang Ji-Suo(王继锁), Fan Hong-Yi(范洪义), and Meng Xiang-Guo(孟祥国) . Chin. Phys. B, 2012, 21(6): 064204.
[14] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[15] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
No Suggested Reading articles found!