|
|
Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay |
Heng-Yun Lv(吕恒云)1, Ji-Suo Wang(王继锁)2, Xiao-Yan Zhang(张晓燕)1, Meng-Yan Wu(吴孟艳)1, Bao-Long Liang(梁宝龙)1, Xiang-Guo Meng(孟祥国)1 |
1 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China;
2 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract Using the thermal-entangled state representation and the operator-ordering method, we investigate Wigner function (WF) for the squeezed negative binomial state (SNBS) and the analytical evolution law of density operator in the amplitude decay channel. The results show that the analytical WF is related to the square of the module of single-variable Hermite polynomials, which leads to a new two-variable special function and its generating function, and the parameters s and γ play opposite roles in the WF distributions. Besides, after undergoing this channel, the initial pure SNBS evolves into a new mixed state related to two operator Hermite polynomials within normal ordering, and fully loses its nonclassicality and decays to vacuum at long decay time.
|
Received: 25 June 2019
Revised: 11 July 2019
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11347026) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AM03 and ZR2017MA011). |
Corresponding Authors:
Xiang-Guo Meng
E-mail: mengxiangguo1978@sina.com
|
Cite this article:
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国) Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay 2019 Chin. Phys. B 28 090302
|
[41] |
Meng X G and Xu X J 2014 Int. J. Theor. Phys. 53 1239
|
[1] |
Kimble H J 1992 Phys. Rep. 219 227
|
[42] |
Fan H Y and Jiang T F 2007 Mod. Phys. Lett. B 21 475
|
[2] |
Dodonov V V 2002 J. Opt. B:Quantum Semiclass. Opt. 4 R1
|
[43] |
Fan H Y and Xu X F 2004 Opt. Lett. 29 1048
|
[3] |
Wang S, Hou L L, Chen X F and Xu X F 2015 Phys. Rev. A 91 063832
|
[44] |
Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
|
[4] |
Sohma M and Hirota O 2003 Phys. Rev. A 68 022303
|
[45] |
Gardiner C W and Zoller P 2000 Quantum Noise, 2nd edn. (Berlin:Springer-Verlag) p. 147
|
[5] |
Barenco A, Dutch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083
|
[46] |
Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
|
[6] |
Ekert A 1991 Phys. Rev. Lett. 67 661
|
[47] |
Xiang S H, Zhu X X and Song K H 2018 Chin. Phys. B 27 100305
|
[7] |
Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press) p. 649
|
[48] |
Wang Z, Meng X G, Li H M and Yuan H C 2014 Int. J. Mod. Phys. B 28 1450115
|
[8] |
Biswas A and Agarwal G S 2007 Phys. Rev. A 75 032104
|
[49] |
Wang J S, Meng X G and Fan H Y 2015 Chin. Phys. B 24 014203
|
[9] |
Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
|
[50] |
Wang J S, Meng X G and Fan H Y 2011 Chin. Phys. Lett. 28 104209
|
[10] |
Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
|
[51] |
Meng Y, Wang J S and Meng X G 2011 Int. J. Theor. Phys. 50 3348
|
[11] |
Berry M V 1984 Proc. R. Soc. A 392 45
|
[52] |
Meng X G, Liu J M, Wang J S and Fan H Y 2019 Eur. Phys. J. D 73 32
|
[12] |
Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
|
[13] |
Agarwal G S 1992 Phys. Rev. A 45 1787
|
[14] |
Matsuo K 1990 Phys. Rev. A 41 519
|
[15] |
Wang X G and Fu H C 2000 Int. J. Theor. Phys. 39 1437
|
[16] |
Chen F and Fan H Y 2014 Chin. Phys. B 23 030304
|
[17] |
Liu T K, Wu P P, Shan C J, Liu J B and Fan H Y 2015 Chin. Phys. B 24 090302
|
[18] |
Da C, Chen Q F and Fan H Y 2014 Int. J. Theor. Phys. 53 4372
|
[19] |
Joshi A and Lawande S V 1991 J. Mod. Opt. 38 2009
|
[20] |
Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 1835
|
[21] |
Xu Y J and Meng X G 2013 Int. J. Theor. Phys. 52 4155
|
[22] |
Wang Z, Meng X G and Fan H Y 2012 J. Opt. Soc. Am. B 29 397
|
[23] |
Song J, He R, Yuan H, Zhou J and Fan H Y 2016 Chin. Phys. Lett. 33 110302
|
[24] |
Fan H Y 2003 J. Opt. B:Quantum Semiclass. Opt. 5 R147
|
[25] |
Meng X G, Fan H Y and Wang J S 2018 Int. J. Theor. Phys. 57 1202
|
[26] |
Zhou J, Fan H Y and Song J 2017 Chin. Phys. B 26 070301
|
[27] |
Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
|
[28] |
Fan H Y 2008 Opt. Commun. 281 2023
|
[29] |
Meng X G, Wang Z, Wang J S and Fan H Y 2013 J. Opt. Soc. Am. B 30 1614
|
[30] |
Meng X G, Wang J S and Gao H C 2016 Int. J. Theor. Phys. 55 3630
|
[31] |
Du C X, Meng X G, Zhang R and Wang J S 2017 Chin. Phys. B 26 120301
|
[32] |
Meng X G, Wang J S, Liang B L and Du C X 2018 J. Exp. Theor. Phys. 127 383
|
[33] |
Xu X L, Li H Q and Fan H Y 2015 Chin. Phys. B 24 070306
|
[34] |
Methta C L 1967 Phys. Rev. Lett. 18 752
|
[35] |
Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag) p. 21
|
[36] |
Zhang B L, Meng X G and Wang J S 2012 Chin. Phys. B 21 030304
|
[37] |
Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
|
[38] |
Glauber R J 1963 Phys. Rev. 130 2529
|
[39] |
Klauder J R 1963 J. Math. Phys. 4 1005
|
[40] |
Wang Z, Meng X G and Fan H Y 2013 J. Phys. A:Math. Theor. 46 135305
|
[41] |
Meng X G and Xu X J 2014 Int. J. Theor. Phys. 53 1239
|
[42] |
Fan H Y and Jiang T F 2007 Mod. Phys. Lett. B 21 475
|
[43] |
Fan H Y and Xu X F 2004 Opt. Lett. 29 1048
|
[44] |
Meng X G, Goan H S, Wang J S and Zhang R 2018 Opt. Commun. 411 15
|
[45] |
Gardiner C W and Zoller P 2000 Quantum Noise, 2nd edn. (Berlin:Springer-Verlag) p. 147
|
[46] |
Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
|
[47] |
Xiang S H, Zhu X X and Song K H 2018 Chin. Phys. B 27 100305
|
[48] |
Wang Z, Meng X G, Li H M and Yuan H C 2014 Int. J. Mod. Phys. B 28 1450115
|
[49] |
Wang J S, Meng X G and Fan H Y 2015 Chin. Phys. B 24 014203
|
[50] |
Wang J S, Meng X G and Fan H Y 2011 Chin. Phys. Lett. 28 104209
|
[51] |
Meng Y, Wang J S and Meng X G 2011 Int. J. Theor. Phys. 50 3348
|
[52] |
Meng X G, Liu J M, Wang J S and Fan H Y 2019 Eur. Phys. J. D 73 32
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|