Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 093401    DOI: 10.1088/1674-1056/ab33f2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Interaction of H2+ molecular beam with thin layer graphene foils

Min Li(李敏)1, Guo-Feng Qu(曲国峰)1, Yi-Zhou Wang(王亦舟)1, Zhou-Sen Zhu(朱洲森)2, Mian-Gong Shi(师勉恭)1, Mao-Lei Zhou(周茂蕾)1, Dong Liu(刘东)1, Zi-Xu Xu(徐子虚)1, Ming-Jiang Song(宋明江)1, Jun Zhang(张俊)1, Fan Bai(白帆)1, Xiao-Dong Liao(廖小东)1, Ji-Feng Han(韩纪锋)1
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China
Abstract  

The interaction of MeV H2+ molecular ions with thin layer graphene and graphite foils was studied by using a high-resolution electrostatic analyzer. A large number of fragment protons were observed at zero degree (along the beam direction) when the H2+ beam was passing through the monolayer graphene foil, which indicates that the electron of the H2+ molecular ions can be stripped easily even by the monolayer graphene foil. More trailing than leading protons were found in the energy spectrum, which means significant wake effect was observed in the monolayer graphene foil. The ratio of the numbers of trailing protons over leading protons first increased with the thickness for the much thinner graphene foils, and then decreased with the thickness for the much thicker graphite foils, which indicates that the bending effect of the wake field on the trailing proton varied with the foil thickness.

Keywords:  H2+ molecular ions      graphene      electron stripping      wake effect  
Received:  03 April 2019      Revised:  21 June 2019      Accepted manuscript online: 
PACS:  34.35.+a (Interactions of atoms and molecules with surfaces)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  34.50.Gb (Electronic excitation and ionization of molecules)  
  68.65.Pq (Graphene films)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11575121) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB125004).

Corresponding Authors:  Guo-Feng Qu, Ji-Feng Han     E-mail:  quguofeng@scu.edu.cn;hanjf@scu.edu.cn

Cite this article: 

Min Li(李敏), Guo-Feng Qu(曲国峰), Yi-Zhou Wang(王亦舟), Zhou-Sen Zhu(朱洲森), Mian-Gong Shi(师勉恭), Mao-Lei Zhou(周茂蕾), Dong Liu(刘东), Zi-Xu Xu(徐子虚), Ming-Jiang Song(宋明江), Jun Zhang(张俊), Fan Bai(白帆), Xiao-Dong Liao(廖小东), Ji-Feng Han(韩纪锋) Interaction of H2+ molecular beam with thin layer graphene foils 2019 Chin. Phys. B 28 093401

[1] Poizat J C and Remillieux J 1971 Phys. Lett. A 34 53
[2] Vager Z, Naaman R and Kanter E P 1989 Science 244 426
[3] Grande P L and Schiwietz G 1998 Phys. Rev. A 58 3796
[4] Brandt W, Ratkowski A and Ritchie R H 1974 Phys. Rev. Lett. 33 1325
[5] Arista N R 1978 Phys. Rev. B 18 1
[6] Steinbeck J and Dettmann K 1978 J. Phys. C:Solid State Phys. 11 2907
[7] Arista N R 2000 Nucl. Instr. Meth. B 164-165 108
[8] Eckardt J C, Lantschner G, Arista N R and Baragiola R A 1978 J. Phys. C:Solid State Phys. 11 L851
[9] Susuki Y, Fritz M, Kimura K, Mannami M, Garcia-Molina R and Abril I 2000 Phys. Rev. A 62 12902
[10] Denton C D, Abril I, Garcia-Molina R and Heredia-Avalos S 2007 Nucl. Instr. Meth. B 256 137
[11] Zhu Z S, Miao J W, Liao X H, Miao L, Yuan X D and Shi M G 2009 Chin. Phys. B 18 4840
[12] Zhu Z S, Yuan X D, Miao J W, Shi M G, Liao X H and Fang C J 2012 Acta Phys. Sin. 61 209203(in Chinese)
[13] Sigmund P 2014 Particle Penetration and Radiation Effects Volume 2:Penetration of Atomic and Molecular Ions (Switzerland:Springer International Publishing Switzerland) p. 603
[14] Gemmell D S, Remillieux J, Poizat J C, Gaillard M J, Holl, R E and Vager Z 1975 Phys. Rev. Lett. 34 1420
[15] Ben-Hamu D, Baer A, Feldman H, Levin J, Heber O, Amitay Z, Vager Z and Zajfman D 1997 Phys. Rev. A 56 4786
[16] Cooney P J, Gemmell D S, Pietsch W J, Ratkowski A J, Vager Z and Zabransky B J 1981 Phys. Rev. A 24 746
[17] Behar M, Dias J F, Grande P L, Dos Santos J H R and Arista N R 2001 Phys. Rev. A 64 22904
[18] Miao J W, Yang B F, Hao S Z, Jiang Z X, Shi M G and Cue N 1986 Nucl. Instr. Meth. B 13 181
[19] Han J F, An Z, Zheng G Q, Bai F, Li Z H, Wang P, Liao X D, Liu M T, Chen S L, Song M J and Zhang J 2018 Nucl. Instr. Meth. B 418 68
[20] Breskin A, Faibis A, Goldring G, Hass M, Kaim R, Vager Z and Zwang N 1980 Nucl. Instr. Meth. 170 93
[21] Plesser I, Vager Z and Naaman R 1986 Phys. Rev. Lett. 56 1559
[22] Wang Y N, Qiu H T and Mišković Z L 2000 Phys. Rev. Lett. 85 1448
[23] Arista N R and Huber T E 1976 Phys. Rev. Lett. 36 200
[24] Kim Y and Cheng K 1980 Phys. Rev. A 22 61
[25] Basbas G and Ritchie R H 1982 Phys. Rev. A 25 1943
[26] Sigmund P and Schinner A 2011 Eur. Phys. J. B 61 39
[27] Martín Y Marero D, Gordillo N and González-Arrabal R 2009 Phys. Rev. B 79 155449
[28] Li M, Zhu Z S, Han J F, Shi M G, Zhou M L, Chen Z Y, Liu D and Qu G F 2018 At. Energy Sci. Technol. 52 705(in Chinese)
[29] http://www.tedpella.com/Support_Films_html/Graphene-TEM-Support-Film.htm[2019-6-21]
[30] http://www.emcn.com.cn/[2019-6-21]
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!