Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra |
Shaohua Wang(王少华)1, Xiao Zhang(张晓)2, Hechang Lei(雷和畅)1 |
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract We report the detailed physical properties of quaternary compound Ba2BiFeS5 with the key structural ingredient of isolated FeS4 tetrahedra. Magnetization and heat capacity measurements clearly indicate that Ba2BiFeS5 has a paramagnetic to antiferromagnetic transition at about 30 K. The calculated magnetic entropy above ordering temperature is much smaller than theoretical value for high-spin Fe3+ ion with S=5/2, implying the possible short-range antiferromagnetic fluctuation in Ba2BiFeS5.
|
Received: 12 May 2019
Revised: 06 June 2019
Accepted manuscript online:
|
PACS:
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
75.20.Ck
|
(Nonmetals)
|
|
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. 11574394, 11774423, and 11822412), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (RUC) (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17). |
Corresponding Authors:
Hechang Lei
E-mail: hlei@ruc.edu.cn
|
Cite this article:
Shaohua Wang(王少华), Xiao Zhang(张晓), Hechang Lei(雷和畅) Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra 2019 Chin. Phys. B 28 087401
|
[1] |
Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
|
[2] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
|
[3] |
Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
|
[4] |
Sasmal K, Lv B, Lorenz B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007
|
[5] |
Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2008 Appl. Phys. Lett. 93 152505
|
[6] |
Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W and Guloy A M 2008 Phys. Rev. B 78 060505
|
[7] |
Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H and Wang W Y 2012 Sci. Rep. 2 426
|
[8] |
Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
|
[9] |
Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15
|
[10] |
Chen X H, Dai P H, Feng D L, Xiang T and Zhang F C 2014 Natl. Sci. Rev. 1 371
|
[11] |
Bronger W, Kyas A and Muller P 1987 J Solid State Chem 70 262
|
[12] |
Serpil Gonen Z, Fournier P, Smolyaninova V, Greene R, Araujo-Moreira F M and Eichhorn B 2000 Chem. Mater. 12 3331
|
[13] |
Lei H C, Ryu H, Frenkel A I and Petrovic C 2011 Phys. Rev. B 84 214511
|
[14] |
Caron J M, Neilson J R, Miller D C, Llobet A and McQueen T M 2011 Phys. Rev. B 84 180409
|
[15] |
Takahashi H, Sugimoto A, Nambu Y, Yamauchi T, Hirata Y, Kawakami T, Avdeev M, Matsubayashi K, Du F, Kawashima C, Soeda H, Nakano S, Uwatoko Y, Ueda Y, Sato T J and Ohgushi K 2015 Nat. Mater. 14 1008
|
[16] |
Yamauchi T, Hirata Y, Ueda Y and Ohgushi K 2015 Phys. Rev. Lett. 115 246402
|
[17] |
Ying J J, Lei H C, Petrovic C, Xiao Y M and Struzhkin V V 2017 Phys. Rev. B 95 241109
|
[18] |
Karki A B, McCandless G T, Stadler S, Xiong Y M, Li J, Chan J Y and Jin R 2011 Phys. Rev. B 84 054412
|
[19] |
Geng L, Cheng W D, Zhang H, Lin C S, Zhang W L, Li Y Y and He Z Z 2011 Inorg. Chem. 50 2378
|
[20] |
Li X S, Zhang X, Kalai Selvan G, Arumugam S, Huang F Q, Wu Y C and Yao J Y 2016 Chem. Asian J. 11 3436
|
[21] |
Wang J, Greenfield J T and Kovnir K 2016 J. Solid State Chem. 242 22
|
[22] |
TOPAS Version 4.2; 2009 Bruker AXS, Karlsruhe, Germany
|
[23] |
Aurivillius B 1983 Acta Chem. Scand. A 37 399
|
[24] |
Fisher M E 1962 Philos. Mag. 7 1731
|
[25] |
Zhou C S, Wang J F, Liu X, Chen F Y, Di Y Y, Gao S L and Shi Q 2018 New J. Chem. 42 8400
|
[26] |
Gupta S, Das A, Suresh K G, Hoser A, Knyazev Y V, Kuzmin Y I and Lukoyanov A V 2015 Mater. Res. Exp. 2 046101
|
[27] |
Loos S, Gruner D, Abdel-Hafiez M, Seidel J, Hüttl R, Wolter A, Bohmhammel K and Mertens F 2015 J. Chem. Thermodyn. 85 77
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|