|
|
Nb-based Josephson parametric amplifier for superconducting qubit measurement |
Fei-Fan Su(宿非凡)1,2, Zi-Ting Wang(王子婷)1,2, Hui-Kai Xu(徐晖凯)1,2, Shou-Kuan Zhao(赵寿宽)1,2, Hai-Sheng Yan(严海生)1,2, Zhao-Hua Yang(杨钊华)1,2, Ye Tian(田野)1,2, Shi-Ping Zhao(赵士平)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report a fabrication process and characterization of the Josephson parametric amplifier (JPA) for the single-shot quantum state measurement of superconducting multiqubit system. The device is prepared using Nb film as its base layer, which is convenient in the sample patterning process like e-beam lithography and film etching. Our results show that the JPA has a bandwidth up to 600 MHz with gain above 15 dB and noise temperature approaching the quantum limit. The qubit state differentiation measurements demonstrate the signal-to-noise ratio around 3 and the readout fidelity above 97% and 91% for the ground and first-excited states, respectively.
|
Received: 18 July 2019
Revised: 20 August 2019
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Cp
|
(Josephson devices)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
Fund: Project supported by the Science Funds from the Ministry of Science and Technology of China (Grant Nos. 2015CB921104 and 2016YFA0300601), the National Natural Science Foundation of China (Grant Nos. 11674380 and 11874063), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07010300 and XDB28000000), and the Key Research and Development Program of Guangdong Province, China (Grant No. 2018B030326001). |
Corresponding Authors:
Shi-Ping Zhao
E-mail: spzhao@iphy.ac.cn
|
Cite this article:
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平) Nb-based Josephson parametric amplifier for superconducting qubit measurement 2019 Chin. Phys. B 28 110303
|
[1] |
Devoret M H and Schoelkopf R J 2013 Science 339 1169
|
[2] |
Wendin G 2017 Rep. Prog. Phys. 80 106001
|
[3] |
Wallraff A, Schuster D and Blai A 2005 Phys. Rev. Lett. 95 060501
|
[4] |
Vijay R, Slichter D and Siddiqi I 2011 Phys. Rev. Lett. 106 110502
|
[5] |
Hatridge M, Vijay R, Schlichter D H, Clarke J and Siddiqi I 2011 Phys. Rev. B 83 134501
|
[6] |
Akgiray A H, Weinreb S and Leblanc R 2013 IEEE Trans. Microw. 61 3285
|
[7] |
Mutus J Y, White T C, Jeffrey E, Sank D and Martinis J M 2013 Appl. Phys. Lett. 103 122602
|
[8] |
Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S and Yamamoto T 2013 Appl. Phys. Lett. 103 132602
|
[9] |
Huang K Q, Guo Q J, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X B and Zheng D N 2017 Chin. Phys. B 26 094203
|
[10] |
Roy Tanay, Kundu Suman, Chand Madhavi, Vadiraj A M, Ranadive A, Nehra N, P Patankar Meghan, Aumentado J, Clerk A A and Vijay R 2015 Appl. Phys. Lett. 107 262601
|
[11] |
Mutus J Y, White T C, Jeffrey E, Sank D and Martinis J M 2014 Appl. Phys. Lett. 104 263513
|
[12] |
Jeffrey E, Sank D, Barends R, et al. 2014 Phys. Rev. Lett. 112 190504
|
[13] |
Zheng Y, Song C, Chen M C, Xia B X, Liu W X, Guo Q J, Zhang L B, Xu D, Deng H, Huang K Q, Wu Y L, Yan Z G, Zheng D N, Lu L, Pan J W, Wang H, Lu C Y and Zhu X B 2017 Phys. Rev. Lett. 118 210504
|
[14] |
Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
|
[15] |
Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N and Fan H 2018 Phys. Rev. Lett. 120 050507
|
[16] |
Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B and Pan J W 2019 Science 364 753
|
[17] |
Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 060309
|
[18] |
Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Ye, Zhu X B, Zheng D N, Lu Li and Zhao S P 2017 Chin. Phys. B 26 060308
|
[19] |
Sank D T 2014 Fast Accurate State Measurement in Superconducting Qubits (PhD Thesis) (Santa Barbara:University of California, Santa Barbara)
|
[20] |
Liu W Y, Su F F, Xu H K, Li Z Y, Tian Ye, Zhu X B, Lu L, Han S Y and Zhao S P 2018 Supercond. Sci. Technol. 31 045003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|