CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor |
Jiao-Feng Zhang(张教凤)1, Zheng-Hong Qian(钱正洪)1,2, Hua-Chen Zhu(朱华辰)2, Ru Bai(白茹)2, Jian-Guo Zhu(朱建国)1 |
1 School of Materials Science and Engineering, Sichuan University, Chengdu 610041, China; 2 Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract In this paper, the giant magnetoresistance (GMR) multilayer sensor is fabricated with a Wheatstone bridge, and it exhibits excellent performance with a sensitivity of 2.8349 mV/(V/Oe) (1 Oe=79.5775 A·m-1) and a saturation field of 26 Oe along the sensitive axis. The GMR sensor is also characterized in a high magnetic field. The sensitivity decreases from 2.8349 mV/(V/Oe) at an angle of 0° to 0.0175 mV/(V/Oe) at an angle of 90°. Then, the sensor is placed in a series of rotating magnetic fields. We propose a model to express the output characteristics of the GMR multilayer sensor. The transfer curves of the sensor can be shown as two exactly symmetrical circles with an increasing radius when the magnetic field increases. The experimental results are consistent with the simulation results of the model. The advantage of this model is that it is simpler and more intuitive.
|
Received: 19 February 2019
Revised: 22 May 2019
Accepted manuscript online:
|
PACS:
|
75.47.De
|
(Giant magnetoresistance)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
72.15.Gd
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFF01010701), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ17F010004), and the National Natural Science Foundation of China (Grant No. 61741506). |
Corresponding Authors:
Zheng-Hong Qian
E-mail: zqian@hdu.edu.cn
|
Cite this article:
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国) Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor 2019 Chin. Phys. B 28 087501
|
[36] |
Taniguchi T and Imamura H 2011 Phys. Rev. B 83 054432
|
[1] |
Daughton J, Brown J, Chen E, Beech R, Pohm A and Kude W 1994 IEEE Trans. Magn. 30 4608
|
[37] |
Wang K, Zhang S and Levy P M 1996 Phys. Rev. B 54 11965
|
[2] |
Ene C B, Schmitz G, Kirchheim R and Andreas Hütten 2005 Acta Mater. 53 3383
|
[38] |
Miller B H, Chen E Y and Dahlberg E D 1993 J. Appl. Phys. 73 6384
|
[3] |
Li J, Qian Z, Sun Y, Bai R and Zhu J 2013 IEEE Sens. J. 13 4944
|
[39] |
Vedyayev A, Dieny, Ryzhanova N, Genin J and Cowache C 1994 Epl. 25 465
|
[4] |
Kuru H, Kockar H and Alper M 2017 J. Magn. Magn. Mater. 444 132
|
[40] |
Zhu H, Qian Z and Huang C 2011 1st Int. Symp. Spintronic Devices Commercialization (ISSDC) October 21-24, 2010, Beijing, p. 263
|
[5] |
Lu S, Shang J X and Zhang Y 2007 Chin. Phys. Lett. 24 3229
|
[41] |
Sun Y C, Qian Z H, Bai R and Zhu H C 2013 Adv. Mater. Res. 662 746
|
[6] |
Li S T, Liu X, Shi W K, Cao J W, Wei F L and Wei D 2009 Chin. Phys. B 18 1643
|
[42] |
Cubells-Beltrán María-Dolores, Reig Cándid, Jordi M, Joana S and Susana C 2016 Sensors 16 939
|
[7] |
Tao X and Xia K 2011 Acta Phys. Sin. 60 127202 (in Chinese)
|
[43] |
Du Y and Pong P W T 2016 5th International Symposium on NexGeneration Electron (ISNE), May 4-6, 2016, Hsinchu, Taiwan, p. 2
|
[8] |
Zhou S M and Chen F L 2012 Chin. Phys. Lett. 29 047501
|
[9] |
Pang Z Y, Chen Y X, Liu T T, Zhang Y P, Xie S J, Yan S S and Han S H 2006 Chin. Phys. Lett. 23 1566
|
[10] |
Wang G H, Hang Z D, Xuan H C, Mang S C, Cheng S Y, Zhang C L ang Du Y W 2013 Chin. Phys. B 22 77506
|
[11] |
Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 67501
|
[12] |
Sun J F, Xing D W and Zhang S L 2010 Chin. Phys. B 19 77502
|
[13] |
Bai R, Qian Z H, Zhu H C, Li Q L, Li Y, Peng Y Z and Huo D X 2016 IEEE Trans. Magn. 53 1
|
[14] |
Cubells-Beltran María Dolores, Reig C and Munoz Diego Ramírez 2009 IEEE Sens. J. 9 1756
|
[15] |
Reig C, María-Dolores Cubells-Beltran and Diego Ramírez Muñoz 2009 Sensors 9 7919
|
[16] |
Kang W, Ran Y, Lv W, Zhang Y and Zhao A 2017 IEEE Magn. Lett. 7 1
|
[17] |
Jaiswal A, Chakraborty I and Roy K 2017 IEEE Magn. Lett. 8 1
|
[18] |
Qian L J, Hu J G and Xu X Y 2009 Chin. Phys. B 18 2589
|
[19] |
Li S T, Liu X, Shi W K, Cao J L, Wei F L and Wei D 2009 Chin. Phys. B 18 1643
|
[20] |
Smith N, Zeltser A M and Parker M R 1996 IEEE Trans. Magn. 32 135
|
[21] |
Djamal M and Ramli 2012 Procedia Eng. 32 60
|
[22] |
Lisa L, Daniel K, Rahel K, Johannes R, Piriya T and Anja W 2015 Sensors 15 28665
|
[23] |
Reig C and María-Dolores Cubells-Beltrán 2016 High Sensitivity Magnetometers 2nd edn. (Berlin, Germany: Springer) pp. 225-252
|
[24] |
Yan S, Cao Z, Guo Z, Zhenyi Z, Anni C and Yue Q 2018 Sensors 18 1832
|
[25] |
Qian Z, Wang D, Daughton J M, Tondra M, Nordman M and Popple A 2004 IEEE Trans. Magn. 40 2643
|
[26] |
Nakatani T, Li S, Sakuraba Y, Furubayashi T and Hono K 2018 IEEE Trans. Magn. 54 1
|
[27] |
Lacour D, Katine J A, Smith N and Carey M J 2004 Appl. Phys. Lett. 85 4681
|
[28] |
Lenz J and Edelstein A S 2006 IEEE Sens. J. 6 631
|
[29] |
Li X, Zhou Y, Zheng C, Chan P H, Chan M and Pong P W T 2016 Appl. Phys. Lett. 109 192402
|
[30] |
Wu S B, Chen S, Li H and Yang X F 2012 Acta Phys. Sin. 61 97504 (in Chinese)
|
[31] |
Qian L J, Xu X Y and Hu J G 2009 J. Funct. Mater. Dev. 18 2589
|
[32] |
Kang M H, Choi B W, Koh K C, Lee J H and Park G T 2005 Sens. Actuator A-Phys. 118 278
|
[33] |
Zhang S, Levy P M and Fert A 1992 Physica B 45 8689
|
[34] |
Camley R E and Barnas J 1989 Phys. Rev. Lett. 63 664
|
[35] |
Parent F, Tuaillon J, Stern L B, Dupuis V, Prevel B, Perez A, Melinon P, Guiraud G, Morel R, Barthélémy A and Fert A 1997 Phys. Rev. B 55 3683
|
[36] |
Taniguchi T and Imamura H 2011 Phys. Rev. B 83 054432
|
[37] |
Wang K, Zhang S and Levy P M 1996 Phys. Rev. B 54 11965
|
[38] |
Miller B H, Chen E Y and Dahlberg E D 1993 J. Appl. Phys. 73 6384
|
[39] |
Vedyayev A, Dieny, Ryzhanova N, Genin J and Cowache C 1994 Epl. 25 465
|
[40] |
Zhu H, Qian Z and Huang C 2011 1st Int. Symp. Spintronic Devices Commercialization (ISSDC) October 21-24, 2010, Beijing, p. 263
|
[41] |
Sun Y C, Qian Z H, Bai R and Zhu H C 2013 Adv. Mater. Res. 662 746
|
[42] |
Cubells-Beltrán María-Dolores, Reig Cándid, Jordi M, Joana S and Susana C 2016 Sensors 16 939
|
[43] |
Du Y and Pong P W T 2016 5th International Symposium on NexGeneration Electron (ISNE), May 4-6, 2016, Hsinchu, Taiwan, p. 2
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|