Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087303    DOI: 10.1088/1674-1056/28/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions

Zhi-Cheng Wang(王志成)1, Zhang-Zhang Cui(崔璋璋)2,3, Hui Xu(徐珲)1, Xiao-Fang Zhai(翟晓芳)1,3, Ya-Lin Lu(陆亚林)1,2,3
1 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;
2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China;
3 Synergy Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

Metal/semiconductor memristive heterostructures have potential applications in nonvolatile memory and computing devices. To enhance the performance of the memristive devices, it requires a comprehensive engineering to the metal/semiconductor interfaces. Here in this paper, we discuss the effects of oxygen vacancies and temperature on the memristive behaviors of perovskite-oxide Schottky junctions, each consisting of SrRuO3 thin films epitaxially grown on Nb:SrTiO3 substrates. The oxygen partial pressure and laser fluence are controlled during the film growth to tune the oxygen defects in SrRuO3 films, and the Schottky barrier height can be controlled by both the temperature and oxygen vacancies. The resistive switching measurements demonstrate that the largest resistance switching ratio can be obtained by controlling oxygen vacancy concentration at lower temperature. It suggests that reducing Schottky barrier height can enhance the resistive switching performance of the SrRuO3/Nb:SrTiO3 heterostructures. This work can conduce to the development of high-performance metal-oxide/semiconductor memristive devices.

Keywords:  memristor      oxygen vacancy      Schottky barrier  
Received:  09 April 2019      Revised:  06 June 2019      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51627901 and 11574287), the National Key Research and Development Program of China (Grant No. 2016YFA0401004), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY100000).

Corresponding Authors:  Zhang-Zhang Cui, Ya-Lin Lu     E-mail:  zzcui@ustc.edu.cn;yllu@ustc.edu.cn

Cite this article: 

Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林) Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions 2019 Chin. Phys. B 28 087303

[1] Janousch M, Meijer G I, Staub U, Delley B, Karg S F and Andreasson B P 2007 Adv. Mater. 19 2232
[2] Shibuya K, Dittmann R, Mi S and Waser R 2010 Adv. Mater. 22 411
[3] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H and Seo S 2011 Nat. Mater. 10 625
[4] Wu D, Jiang Y, Yu Y, Zhang Y, Li G, Zhu Z, Wu C, Wang L, Luo L and Jie J 2012 Nanotechnology 23 485203
[5] Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mater. Sci. Eng. R 83 1
[6] Fujii T, Kawasaki M, Sawa A, Kawazoe Y, Akoh H and Tokura Y 2007 Phys. Rev. B 75 165101
[7] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[8] Jiang A Q, Wang C, Jin K J, Liu X B, Scott J F, Hwang C S, Tang T A, Lu H B and Yang G Z 2011 Adv. Mater. 23 1277
[9] Lee E, Gwon M, Kim D W and Kim H 2011 Appl. Phys. Lett. 98 132905
[10] Lee H S, Choi S G, Park H H and Rozenberg M 2013 Sci. Rep. 3 1704
[11] Xu N, Liu L, Sun X, Liu X, Han D, Wang Y, Han R, Kang J and Yu B 2008 Appl. Phys. Lett. 92 232112
[12] Chang W Y, Liao J H, Lo Y S and Wu T B 2009 Appl. Phys. Lett. 94 172107
[13] Do Y H, Kwak J S, Bae Y C, Jung K, Im H and Hong J P 2009 Appl. Phys. Lett. 95 093507
[14] Goux L, Lisoni J, Jurczak M, Wouters D, Courtade L and Muller C 2010 J. Appl. Phys. 107 024512
[15] Yan Z, Guo Y, Zhang G and Liu J M 2011 Adv. Mater. 23 1351
[16] Deng X L, Hong S, Hwang I, Kim J S, Jeon J H, Park Y C, Lee J, Kang S O, Kawai T and Park B H 2012 Nanoscale 4 2029
[17] Rana K G, Khikhlovskyi V and Banerjee T 2012 Appl. Phys. Lett. 100 213502
[18] Maria J, Trolier-McKinstry S, Schlom D, Hawley M and Brown G 1998 J. Appl. Phys. 83 4373
[19] Kamo T, Nishida K, Akiyama K, Sakai J, Katoda T and Funakubo H 2007 Jpn. J. Appl. Phys. 46 6987
[20] Yoo Y Z, Chmaissem O, Kolesnik S, Dabrowski B, Maxwell M and Kimball C W 2005 J. Appl. Phys. 97 103525
[21] Lu W L, He K H, Song W D, Sun C J, Chow G M and Chen J S 2013 J. Appl. Phys. 113 17E125
[22] Harano T, Shibata G, Ishigami K, Takashashi Y, Verma V, Singh V, Kadono T, Fujimori A, Takeda Y and Okane T 2013 Appl. Phys. Lett. 102 222404
[23] Noh H J, Oh S J, Park B G, Park J H, Kim J Y, Kim H D, Mizokawa T, Tjeng L H, Lin H J, Chen C T, Schuppler S, Nakatsuji S, Fukazawa H and Maeno Y 2005 Phys. Rev. B 72 052411
[24] Abbate M, Guevara J A, Cuffini S L, Mascarenhas Y P and Morikawa E 2002 Eur. Phys. J. B 25 203
[25] Cui Z, Xu H, Yun Y, Guo J, Chuang Y D, Huang H, Meng D, Wang J, Fu Z, Peng R, Knize R J, Brown G J, Zhai X and Lu Y 2016 J. Appl. Phys. 120 084101
[26] Guedes E B, Abbate M, Ishigami K, Fujimori A, Yoshimatsu K, Kumigashira H, Oshima M, Vicentin F C, Fonseca P T and Mossanek R J O 2012 Phys. Rev. B 86 235127
[27] Kapilashrami M, Zhang Y, Liu Y S, Hagfeldt A and Guo J 2014 Chem. Rev. 114 9662
[28] Zheng L, Zhu X Q, Sui Y X, Xue J Z, Liu B and Pei M X 2015 Chin. Phys. B 24 056101
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[7] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[10] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[11] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[12] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[13] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[14] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[15] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
No Suggested Reading articles found!