CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions |
Zhi-Cheng Wang(王志成)1, Zhang-Zhang Cui(崔璋璋)2,3, Hui Xu(徐珲)1, Xiao-Fang Zhai(翟晓芳)1,3, Ya-Lin Lu(陆亚林)1,2,3 |
1 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;
2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China;
3 Synergy Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Metal/semiconductor memristive heterostructures have potential applications in nonvolatile memory and computing devices. To enhance the performance of the memristive devices, it requires a comprehensive engineering to the metal/semiconductor interfaces. Here in this paper, we discuss the effects of oxygen vacancies and temperature on the memristive behaviors of perovskite-oxide Schottky junctions, each consisting of SrRuO3 thin films epitaxially grown on Nb:SrTiO3 substrates. The oxygen partial pressure and laser fluence are controlled during the film growth to tune the oxygen defects in SrRuO3 films, and the Schottky barrier height can be controlled by both the temperature and oxygen vacancies. The resistive switching measurements demonstrate that the largest resistance switching ratio can be obtained by controlling oxygen vacancy concentration at lower temperature. It suggests that reducing Schottky barrier height can enhance the resistive switching performance of the SrRuO3/Nb:SrTiO3 heterostructures. This work can conduce to the development of high-performance metal-oxide/semiconductor memristive devices.
|
Received: 09 April 2019
Revised: 06 June 2019
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
68.55.Ln
|
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51627901 and 11574287), the National Key Research and Development Program of China (Grant No. 2016YFA0401004), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY100000). |
Corresponding Authors:
Zhang-Zhang Cui, Ya-Lin Lu
E-mail: zzcui@ustc.edu.cn;yllu@ustc.edu.cn
|
Cite this article:
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林) Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions 2019 Chin. Phys. B 28 087303
|
[1] |
Janousch M, Meijer G I, Staub U, Delley B, Karg S F and Andreasson B P 2007 Adv. Mater. 19 2232
|
[2] |
Shibuya K, Dittmann R, Mi S and Waser R 2010 Adv. Mater. 22 411
|
[3] |
Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H and Seo S 2011 Nat. Mater. 10 625
|
[4] |
Wu D, Jiang Y, Yu Y, Zhang Y, Li G, Zhu Z, Wu C, Wang L, Luo L and Jie J 2012 Nanotechnology 23 485203
|
[5] |
Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mater. Sci. Eng. R 83 1
|
[6] |
Fujii T, Kawasaki M, Sawa A, Kawazoe Y, Akoh H and Tokura Y 2007 Phys. Rev. B 75 165101
|
[7] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[8] |
Jiang A Q, Wang C, Jin K J, Liu X B, Scott J F, Hwang C S, Tang T A, Lu H B and Yang G Z 2011 Adv. Mater. 23 1277
|
[9] |
Lee E, Gwon M, Kim D W and Kim H 2011 Appl. Phys. Lett. 98 132905
|
[10] |
Lee H S, Choi S G, Park H H and Rozenberg M 2013 Sci. Rep. 3 1704
|
[11] |
Xu N, Liu L, Sun X, Liu X, Han D, Wang Y, Han R, Kang J and Yu B 2008 Appl. Phys. Lett. 92 232112
|
[12] |
Chang W Y, Liao J H, Lo Y S and Wu T B 2009 Appl. Phys. Lett. 94 172107
|
[13] |
Do Y H, Kwak J S, Bae Y C, Jung K, Im H and Hong J P 2009 Appl. Phys. Lett. 95 093507
|
[14] |
Goux L, Lisoni J, Jurczak M, Wouters D, Courtade L and Muller C 2010 J. Appl. Phys. 107 024512
|
[15] |
Yan Z, Guo Y, Zhang G and Liu J M 2011 Adv. Mater. 23 1351
|
[16] |
Deng X L, Hong S, Hwang I, Kim J S, Jeon J H, Park Y C, Lee J, Kang S O, Kawai T and Park B H 2012 Nanoscale 4 2029
|
[17] |
Rana K G, Khikhlovskyi V and Banerjee T 2012 Appl. Phys. Lett. 100 213502
|
[18] |
Maria J, Trolier-McKinstry S, Schlom D, Hawley M and Brown G 1998 J. Appl. Phys. 83 4373
|
[19] |
Kamo T, Nishida K, Akiyama K, Sakai J, Katoda T and Funakubo H 2007 Jpn. J. Appl. Phys. 46 6987
|
[20] |
Yoo Y Z, Chmaissem O, Kolesnik S, Dabrowski B, Maxwell M and Kimball C W 2005 J. Appl. Phys. 97 103525
|
[21] |
Lu W L, He K H, Song W D, Sun C J, Chow G M and Chen J S 2013 J. Appl. Phys. 113 17E125
|
[22] |
Harano T, Shibata G, Ishigami K, Takashashi Y, Verma V, Singh V, Kadono T, Fujimori A, Takeda Y and Okane T 2013 Appl. Phys. Lett. 102 222404
|
[23] |
Noh H J, Oh S J, Park B G, Park J H, Kim J Y, Kim H D, Mizokawa T, Tjeng L H, Lin H J, Chen C T, Schuppler S, Nakatsuji S, Fukazawa H and Maeno Y 2005 Phys. Rev. B 72 052411
|
[24] |
Abbate M, Guevara J A, Cuffini S L, Mascarenhas Y P and Morikawa E 2002 Eur. Phys. J. B 25 203
|
[25] |
Cui Z, Xu H, Yun Y, Guo J, Chuang Y D, Huang H, Meng D, Wang J, Fu Z, Peng R, Knize R J, Brown G J, Zhai X and Lu Y 2016 J. Appl. Phys. 120 084101
|
[26] |
Guedes E B, Abbate M, Ishigami K, Fujimori A, Yoshimatsu K, Kumigashira H, Oshima M, Vicentin F C, Fonseca P T and Mossanek R J O 2012 Phys. Rev. B 86 235127
|
[27] |
Kapilashrami M, Zhang Y, Liu Y S, Hagfeldt A and Guo J 2014 Chem. Rev. 114 9662
|
[28] |
Zheng L, Zhu X Q, Sui Y X, Xue J Z, Liu B and Pei M X 2015 Chin. Phys. B 24 056101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|