CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors |
Wenxing Huo(霍文星)1,2, Zengxia Mei(梅增霞)1, Yicheng Lu(卢毅成)3, Zuyin Han(韩祖银)1,2, Rui Zhu(朱锐)1,2, Tao Wang(王涛)1,2, Yanxin Sui(隋妍心)1,2, Huili Liang(梁会力)1, Xiaolong Du(杜小龙)1,4 |
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Electrical and Computer Engineering, Rutgers University, 94 Brett Rd, Piscataway, New Jersey 08854;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Dual-active-layer (DAL) amorphous InGaZnO (IGZO) thin-film transistors (TFTs) are fabricated at low temperature without post-annealing. A bottom low-resistance (low-R) IGZO layer and a top high-resistance (high-R) IGZO layer constitute the DAL homojunction with smooth and high-quality interface by in situ modulation of oxygen composition. The performance of the DAL TFT is significantly improved when compared to that of a single-active-layer TFT. A detailed investigation was carried out regarding the effects of the thickness of both layers on the electrical properties and gate bias stress stabilities. It is found that the low-R layer improves the mobility, ON/OFF ratio, threshold voltage and hysteresis voltage by passivating the defects and providing a smooth interface. The high-R IGZO layer has a great impact on the hysteresis, which changes from clockwise to counterclockwise. The best TFT shows a mobility of 5.41 cm2/V…, a sub-threshold swing of 95.0 mV/dec, an ON/OFF ratio of 6.70×107, a threshold voltage of 0.24 V, and a hysteresis voltage of 0.13 V. The value of threshold voltage shifts under positive gate bias stress decreases when increasing the thickness of both layers.
|
Received: 03 April 2019
Revised: 04 June 2019
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674405, 61874139, and 11675280). |
Corresponding Authors:
Zengxia Mei, Xiaolong Du
E-mail: zxmei@iphy.ac.cn;xldu@iphy.ac.cn
|
Cite this article:
Wenxing Huo(霍文星), Zengxia Mei(梅增霞), Yicheng Lu(卢毅成), Zuyin Han(韩祖银), Rui Zhu(朱锐), Tao Wang(王涛), Yanxin Sui(隋妍心), Huili Liang(梁会力), Xiaolong Du(杜小龙) Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors 2019 Chin. Phys. B 28 087302
|
[39] |
Oh M S, Lee K, Song J H, Lee B H, Sung M M, Hwang D K and Im S 2008 J. Electrochem. Soc. 155 H1009
|
[1] |
Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305
|
[40] |
Han D, Zhang S, Zhao F, Dong J, Cong Y, Zhang S, Zhang X and Wang Y 2015 Thin Solid Films 594 Part B 266
|
[2] |
Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945
|
[41] |
Jian L Y, Lee H Y, Lin Y H and Lee C T 2018 J. Electron. Mater. 47 1467
|
[3] |
Petti L, Münzenrieder N, Vogt C, Faber H, Büthe L, Cantarella G, Bottacchi F, Anthopoulos T D and Tröster G 2016 Appl. Phys. Rev. 3 021303
|
[42] |
Cross R B M and De Souza M M 2006 Appl. Phys. Lett. 89 263513
|
[4] |
Wang K 2017 SID Symp. Dig. Tech. Pap. 48 497
|
[43] |
Suresh A and Muth J F 2008 Appl. Phys. Lett. 92 033502
|
[5] |
Chen W T, Lo S Y, Kao S C, Zan H W, Tsai C C, Lin J H, Fang C H and Lee C C 2011 IEEE Electron Device Lett. 32 1552
|
[44] |
Jeong J K, Won Yang H, Jeong J H, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 93 123508
|
[6] |
Ye Z, Xu H, Liu T, Liu N, Wang Y, Zhang N and Liu Y 2017 IEEE Trans. Electron. Devices 64 4114
|
[7] |
Huo W, Mei Z, Zhao M, Sui Y, Zhao B, Zhang Y, Wang T, Cui S, Liang H, Jia H and Du X 2018 IEEE Trans. Electron. Devices 65 3791
|
[8] |
Kim S I, Kim C J, Park J C, Song I, Kim S W, Huaxiang Yin, Eunha Lee, Jae Chul Lee and Youngsoo Park 2008 2008 IEEE International Electron Devices Meeting 2008 IEEE International Electron Devices Meeting (IEDM) (San Francisco, CA, USA: IEEE) pp. 1-4
|
[9] |
Kim K M, Jeong W H, Kim D L, Rim Y S, Choi Y, Ryu M K, Park K B and Kim H J 2011 IEEE Electron Dev. Lett. 32 1242
|
[10] |
Marrs M A, Moyer C D, Bawolek E J, Cordova R J, Trujillo J, Raupp G B and Vogt B D 2011 IEEE Trans. Electron. Dev. 58 3428
|
[11] |
Jeong W H, Kim K M, Kim D L, Rim Y S and Kim H J 2012 IEEE Trans. Electron. Dev. 59 2149
|
[12] |
Seo J S and Bae B S 2014 ACS Appl. Mater. Interfaces 6 15335
|
[13] |
Lee S H and Choi W S 2015 J. Disp. Technol. 11 698
|
[14] |
Abliz A, Huang C W, Wang J, Xu L, Liao L, Xiao X, Wu W W, Fan Z, Jiang C, Li J, Guo S, Liu C and Guo T 2016 ACS Appl. Mater. Interfaces 8 7862
|
[15] |
Choi J H, Yang J, Nam S, Pi J, Kim H, Kwon O, Park E, Hwang C and Cho S H 2016 IEEE Electron Dev. Lett. 37 1295
|
[16] |
Liu Y R, Zhao G W, Lai P T and Yao R H 2016 Chin. Phys. B 25 088503
|
[17] |
Faber H, Das S, Lin Y H, Pliatsikas N, Zhao K, Kehagias T, Dimitrakopulos G, Amassian A, Patsalas P A and Anthopoulos T D 2017 Sci. Adv. 3 e1602640
|
[18] |
Stewart K A, Gouliouk V, McGlone J M and Wager J F 2017 IEEE Trans. Electron. Dev. 64 4131
|
[19] |
Nag M, Chasin A, Rockele M, Steudel S, Myny K, Bhoolokam A, Tripathi A, van der Putten B, Kumar A, van der Steen J L, Genoe J, Li F, Maas J, van Veenendaal E, Gelinck G and Heremans P 2013 J. Soc. Inf. Disp. 21 129
|
[20] |
Tian Y, Han D, Zhang S, Huang F, Shan D, Cong Y, Cai J, Wang L, Zhang S, Zhang X and Wang Y 2014 Jpn. J. Appl. Phys. 53 04EF07
|
[21] |
Park J H, Kim Y, Yoon S, Hong S and Kim H J 2014 ACS Appl. Mater. Interfaces 6 21363
|
[22] |
Yang D G, Do Kim H, Kim J H, Lee S W, Park J, Kim Y J and Kim H S 2017 Thin Solid Films 638 361
|
[23] |
Xu H, Xu M, Chen Z, Li M, Zou J, Tao H, Wang L and Peng J 2016 IEEE Electron Dev. Lett. 37 57
|
[24] |
Wager J F 2010 J. Soc. Inf. Disp. 18 749
|
[25] |
Qian L X and Lai P T 2014 IEEE Trans. Device Mater. Reliab. 14 177
|
[26] |
Yue L, Meng F and Chen J 2018 Semicond. Sci. Technol. 33 015012
|
[27] |
Yang W, Song K, Jung Y, Jeong S and Moon J 2013 J. Mater. Chem. C 1 4275
|
[28] |
Banger K, Warwick C, Lang J, Broch K, Halpert J E, Socratous J, Brown A, Leedham T and Sirringhaus H 2016 Chem. Sci. 7 6337
|
[29] |
Ye Z, Yuan Y, Xu H, Liu Y, Luo J and Wong M 2017 IEEE Trans. Electron. Dev. 64 438
|
[30] |
Liu Y, Guan P, Zhang B, Falk M L and Katz H E 2013 Chem. Mater. 25 3788
|
[31] |
Jo J W, Kim K H, Kim J, Ban S G, Kim Y H and Park S K 2018 ACS Appl. Mater. Interfaces 10 2679
|
[32] |
Lee C A, Park D W, Jin S H, Park I H, Lee J D and Park B G 2006 Appl. Phys. Lett. 88 252102
|
[33] |
Daunis T B, Tran J M H and Hsu J W P 2018 ACS Appl. Mater. Interfaces 10 39435
|
[34] |
Wang X, Gao Y, Liu Z, Luo J and Wan Q 2019 IEEE Electron Dev. Lett. 40 224
|
[35] |
Petti L, Münzenrieder N, Salvatore G A, Zysset C, Kinkeldei T, Büthe L and Tröster G 2014 IEEE Trans. Electron. Dev. 61 1085
|
[36] |
Li Y, Liang R, Wang J, Jiang C, Xiong B, Liu H, Wang Z, Wang X, Pang Y, Tian H, Yang Y and Ren T 2019 IEEE Electron Dev. Lett. 40 826
|
[37] |
Yang C P, Chang S J, Chang T H, Wei C Y, Juan Y M, Chiu C J and Weng W Y 2017 IEEE Electron Dev. Lett. 38 572
|
[38] |
Sasa S, Ozaki M, Koike K, Yano M and Inoue M 2006 Appl. Phys. Lett. 89 053502
|
[39] |
Oh M S, Lee K, Song J H, Lee B H, Sung M M, Hwang D K and Im S 2008 J. Electrochem. Soc. 155 H1009
|
[40] |
Han D, Zhang S, Zhao F, Dong J, Cong Y, Zhang S, Zhang X and Wang Y 2015 Thin Solid Films 594 Part B 266
|
[41] |
Jian L Y, Lee H Y, Lin Y H and Lee C T 2018 J. Electron. Mater. 47 1467
|
[42] |
Cross R B M and De Souza M M 2006 Appl. Phys. Lett. 89 263513
|
[43] |
Suresh A and Muth J F 2008 Appl. Phys. Lett. 92 033502
|
[44] |
Jeong J K, Won Yang H, Jeong J H, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 93 123508
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|