Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087302    DOI: 10.1088/1674-1056/28/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors

Wenxing Huo(霍文星)1,2, Zengxia Mei(梅增霞)1, Yicheng Lu(卢毅成)3, Zuyin Han(韩祖银)1,2, Rui Zhu(朱锐)1,2, Tao Wang(王涛)1,2, Yanxin Sui(隋妍心)1,2, Huili Liang(梁会力)1, Xiaolong Du(杜小龙)1,4
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Electrical and Computer Engineering, Rutgers University, 94 Brett Rd, Piscataway, New Jersey 08854;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  

Dual-active-layer (DAL) amorphous InGaZnO (IGZO) thin-film transistors (TFTs) are fabricated at low temperature without post-annealing. A bottom low-resistance (low-R) IGZO layer and a top high-resistance (high-R) IGZO layer constitute the DAL homojunction with smooth and high-quality interface by in situ modulation of oxygen composition. The performance of the DAL TFT is significantly improved when compared to that of a single-active-layer TFT. A detailed investigation was carried out regarding the effects of the thickness of both layers on the electrical properties and gate bias stress stabilities. It is found that the low-R layer improves the mobility, ON/OFF ratio, threshold voltage and hysteresis voltage by passivating the defects and providing a smooth interface. The high-R IGZO layer has a great impact on the hysteresis, which changes from clockwise to counterclockwise. The best TFT shows a mobility of 5.41 cm2/V…, a sub-threshold swing of 95.0 mV/dec, an ON/OFF ratio of 6.70×107, a threshold voltage of 0.24 V, and a hysteresis voltage of 0.13 V. The value of threshold voltage shifts under positive gate bias stress decreases when increasing the thickness of both layers.

Keywords:  thin film transistor      InGaZnO      dual-active-layer  
Received:  03 April 2019      Revised:  04 June 2019      Accepted manuscript online: 
PACS:  73.61.Ga (II-VI semiconductors)  
  77.55.hf (ZnO)  
  85.30.-z (Semiconductor devices)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674405, 61874139, and 11675280).

Corresponding Authors:  Zengxia Mei, Xiaolong Du     E-mail:  zxmei@iphy.ac.cn;xldu@iphy.ac.cn

Cite this article: 

Wenxing Huo(霍文星), Zengxia Mei(梅增霞), Yicheng Lu(卢毅成), Zuyin Han(韩祖银), Rui Zhu(朱锐), Tao Wang(王涛), Yanxin Sui(隋妍心), Huili Liang(梁会力), Xiaolong Du(杜小龙) Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors 2019 Chin. Phys. B 28 087302

[39] Oh M S, Lee K, Song J H, Lee B H, Sung M M, Hwang D K and Im S 2008 J. Electrochem. Soc. 155 H1009
[1] Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305
[40] Han D, Zhang S, Zhao F, Dong J, Cong Y, Zhang S, Zhang X and Wang Y 2015 Thin Solid Films 594 Part B 266
[2] Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945
[41] Jian L Y, Lee H Y, Lin Y H and Lee C T 2018 J. Electron. Mater. 47 1467
[3] Petti L, Münzenrieder N, Vogt C, Faber H, Büthe L, Cantarella G, Bottacchi F, Anthopoulos T D and Tröster G 2016 Appl. Phys. Rev. 3 021303
[42] Cross R B M and De Souza M M 2006 Appl. Phys. Lett. 89 263513
[4] Wang K 2017 SID Symp. Dig. Tech. Pap. 48 497
[43] Suresh A and Muth J F 2008 Appl. Phys. Lett. 92 033502
[5] Chen W T, Lo S Y, Kao S C, Zan H W, Tsai C C, Lin J H, Fang C H and Lee C C 2011 IEEE Electron Device Lett. 32 1552
[44] Jeong J K, Won Yang H, Jeong J H, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 93 123508
[6] Ye Z, Xu H, Liu T, Liu N, Wang Y, Zhang N and Liu Y 2017 IEEE Trans. Electron. Devices 64 4114
[7] Huo W, Mei Z, Zhao M, Sui Y, Zhao B, Zhang Y, Wang T, Cui S, Liang H, Jia H and Du X 2018 IEEE Trans. Electron. Devices 65 3791
[8] Kim S I, Kim C J, Park J C, Song I, Kim S W, Huaxiang Yin, Eunha Lee, Jae Chul Lee and Youngsoo Park 2008 2008 IEEE International Electron Devices Meeting 2008 IEEE International Electron Devices Meeting (IEDM) (San Francisco, CA, USA: IEEE) pp. 1-4
[9] Kim K M, Jeong W H, Kim D L, Rim Y S, Choi Y, Ryu M K, Park K B and Kim H J 2011 IEEE Electron Dev. Lett. 32 1242
[10] Marrs M A, Moyer C D, Bawolek E J, Cordova R J, Trujillo J, Raupp G B and Vogt B D 2011 IEEE Trans. Electron. Dev. 58 3428
[11] Jeong W H, Kim K M, Kim D L, Rim Y S and Kim H J 2012 IEEE Trans. Electron. Dev. 59 2149
[12] Seo J S and Bae B S 2014 ACS Appl. Mater. Interfaces 6 15335
[13] Lee S H and Choi W S 2015 J. Disp. Technol. 11 698
[14] Abliz A, Huang C W, Wang J, Xu L, Liao L, Xiao X, Wu W W, Fan Z, Jiang C, Li J, Guo S, Liu C and Guo T 2016 ACS Appl. Mater. Interfaces 8 7862
[15] Choi J H, Yang J, Nam S, Pi J, Kim H, Kwon O, Park E, Hwang C and Cho S H 2016 IEEE Electron Dev. Lett. 37 1295
[16] Liu Y R, Zhao G W, Lai P T and Yao R H 2016 Chin. Phys. B 25 088503
[17] Faber H, Das S, Lin Y H, Pliatsikas N, Zhao K, Kehagias T, Dimitrakopulos G, Amassian A, Patsalas P A and Anthopoulos T D 2017 Sci. Adv. 3 e1602640
[18] Stewart K A, Gouliouk V, McGlone J M and Wager J F 2017 IEEE Trans. Electron. Dev. 64 4131
[19] Nag M, Chasin A, Rockele M, Steudel S, Myny K, Bhoolokam A, Tripathi A, van der Putten B, Kumar A, van der Steen J L, Genoe J, Li F, Maas J, van Veenendaal E, Gelinck G and Heremans P 2013 J. Soc. Inf. Disp. 21 129
[20] Tian Y, Han D, Zhang S, Huang F, Shan D, Cong Y, Cai J, Wang L, Zhang S, Zhang X and Wang Y 2014 Jpn. J. Appl. Phys. 53 04EF07
[21] Park J H, Kim Y, Yoon S, Hong S and Kim H J 2014 ACS Appl. Mater. Interfaces 6 21363
[22] Yang D G, Do Kim H, Kim J H, Lee S W, Park J, Kim Y J and Kim H S 2017 Thin Solid Films 638 361
[23] Xu H, Xu M, Chen Z, Li M, Zou J, Tao H, Wang L and Peng J 2016 IEEE Electron Dev. Lett. 37 57
[24] Wager J F 2010 J. Soc. Inf. Disp. 18 749
[25] Qian L X and Lai P T 2014 IEEE Trans. Device Mater. Reliab. 14 177
[26] Yue L, Meng F and Chen J 2018 Semicond. Sci. Technol. 33 015012
[27] Yang W, Song K, Jung Y, Jeong S and Moon J 2013 J. Mater. Chem. C 1 4275
[28] Banger K, Warwick C, Lang J, Broch K, Halpert J E, Socratous J, Brown A, Leedham T and Sirringhaus H 2016 Chem. Sci. 7 6337
[29] Ye Z, Yuan Y, Xu H, Liu Y, Luo J and Wong M 2017 IEEE Trans. Electron. Dev. 64 438
[30] Liu Y, Guan P, Zhang B, Falk M L and Katz H E 2013 Chem. Mater. 25 3788
[31] Jo J W, Kim K H, Kim J, Ban S G, Kim Y H and Park S K 2018 ACS Appl. Mater. Interfaces 10 2679
[32] Lee C A, Park D W, Jin S H, Park I H, Lee J D and Park B G 2006 Appl. Phys. Lett. 88 252102
[33] Daunis T B, Tran J M H and Hsu J W P 2018 ACS Appl. Mater. Interfaces 10 39435
[34] Wang X, Gao Y, Liu Z, Luo J and Wan Q 2019 IEEE Electron Dev. Lett. 40 224
[35] Petti L, Münzenrieder N, Salvatore G A, Zysset C, Kinkeldei T, Büthe L and Tröster G 2014 IEEE Trans. Electron. Dev. 61 1085
[36] Li Y, Liang R, Wang J, Jiang C, Xiong B, Liu H, Wang Z, Wang X, Pang Y, Tian H, Yang Y and Ren T 2019 IEEE Electron Dev. Lett. 40 826
[37] Yang C P, Chang S J, Chang T H, Wei C Y, Juan Y M, Chiu C J and Weng W Y 2017 IEEE Electron Dev. Lett. 38 572
[38] Sasa S, Ozaki M, Koike K, Yano M and Inoue M 2006 Appl. Phys. Lett. 89 053502
[39] Oh M S, Lee K, Song J H, Lee B H, Sung M M, Hwang D K and Im S 2008 J. Electrochem. Soc. 155 H1009
[40] Han D, Zhang S, Zhao F, Dong J, Cong Y, Zhang S, Zhang X and Wang Y 2015 Thin Solid Films 594 Part B 266
[41] Jian L Y, Lee H Y, Lin Y H and Lee C T 2018 J. Electron. Mater. 47 1467
[42] Cross R B M and De Souza M M 2006 Appl. Phys. Lett. 89 263513
[43] Suresh A and Muth J F 2008 Appl. Phys. Lett. 92 033502
[44] Jeong J K, Won Yang H, Jeong J H, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 93 123508
[1] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[2] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[3] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[4] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
[5] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[6] Degradation of current-voltage and low frequency noise characteristics under negative bias illumination stress in InZnO thin film transistors
Li Wang(王黎), Yuan Liu(刘远), Kui-Wei Geng(耿魁伟), Ya-Yi Chen(陈雅怡), Yun-Fei En(恩云飞). Chin. Phys. B, 2018, 27(6): 068504.
[7] Positive gate bias stress-induced hump-effect in elevated-metal metal-oxide thin film transistors
Dong-Yu Qi(齐栋宇), Dong-Li Zhang(张冬利), Ming-Xiang Wang(王明湘). Chin. Phys. B, 2017, 26(12): 128101.
[8] Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor
Yu-Rong Liu(刘玉荣), Gao-Wei Zhao(赵高位), Pai-To Lai(黎沛涛), Ruo-He Yao(姚若河). Chin. Phys. B, 2016, 25(8): 088503.
[9] Technology demonstration of a novel poly-Si nanowire thin film transistor
Libin Liu(刘立滨), Renrong Liang(梁仁荣), Bolin Shan(单柏霖), Jun Xu(许军), Jing Wang(王敬). Chin. Phys. B, 2016, 25(11): 118504.
[10] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao (谢应涛), Ouyang Shi-Hong (欧阳世宏), Wang Dong-Ping (王东平), Zhu Da-Long (朱大龙), Xu Xin (许鑫), Tan Te (谭特), Fong Hon-Hang (方汉铿). Chin. Phys. B, 2015, 24(9): 096803.
[11] Influence of white light illumination on the performance of a-IGZO thin film transistor under positive gate-bias stress
Tang Lan-Feng (汤兰凤), Yu Guang (于广), Lu Hai (陆海), Wu Chen-Fei (武辰飞), Qian Hui-Min (钱慧敏), Zhou Dong (周东), Zhang Rong (张荣), Zheng You-Dou (郑有炓), Huang Xiao-Ming (黄晓明). Chin. Phys. B, 2015, 24(8): 088504.
[12] High-photosensitivity polymer thin-film transistors based on poly(3-hexylthiophene)
Liu Yu-Rong (刘玉荣), Lai Pei-Tao (黎沛涛), Yao Ruo-He (姚若河 ). Chin. Phys. B, 2012, 21(8): 088503.
[13] Numerical study on the dependence of ZnO thin-film transistor characteristics on grain boundary position
Zhang An(张安), Zhao Xiao-Ru(赵小如), Duan Li-Bing(段利兵), Liu Jin-Ming(刘金铭), and Zhao Jian-Lin(赵建林). Chin. Phys. B, 2011, 20(5): 057201.
[14] Modeling of polycrystalline ZnO thin-film transistors with a consideration of the deep and tail states
Gao Hai-Xia(高海霞), Hu Rong(胡榕), and Yang Yin-Tang(杨银堂) . Chin. Phys. B, 2011, 20(11): 116803.
[15] Performance improvement in pentacene organic thin film transistors by inserting a C60 ultrathin layer
Sun Qin-Jun(孙钦军), Xu Zheng(徐征), Zhao Su-Ling(赵谡玲), Zhang Fu-Jun(张福俊), and Gao Li-Yan(高利岩). Chin. Phys. B, 2011, 20(1): 017306.
No Suggested Reading articles found!