Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 068504    DOI: 10.1088/1674-1056/27/6/068504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Degradation of current-voltage and low frequency noise characteristics under negative bias illumination stress in InZnO thin film transistors

Li Wang(王黎)1,2,3, Yuan Liu(刘远)1,2,3, Kui-Wei Geng(耿魁伟)1, Ya-Yi Chen(陈雅怡)1,2, Yun-Fei En(恩云飞)2
1 School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China;
2 Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, CEPREI, Guangzhou 510610, China;
3 Key Laboratory of Silicon Device Technology, Chinese Academy of Sciences, Beijing 100029, China
Abstract  The instabilities of indium-zinc oxide thin film transistors under bias and/or illumination stress are studied in this paper. Firstly, illumination experiments are performed, which indicates the variations of current-voltage characteristics and electrical parameters (such as threshold voltage and sub-threshold swing) are dominated by the stress-induced ionized oxygen vacancies and acceptor-like states. The dependence of degradation on light wavelength is also investigated. More negative shift of threshold voltage and greater sub-threshold swing are observed with the decrease of light wavelength. Subsequently, a negative bias illumination stress experiment is carried out. The degradation of the device is aggravated due to the decrease of recombination effects between ionized oxygen vacancies and free carriers. Moreover, the contributions of ionized oxygen vacancies and acceptor-like states are separated by using the mid-gap method. In addition, ionized oxygen vacancies are partially recombined at room temperature and fully recombined at high temperature. Finally, low-frequency noise is measured before and after negative bias illumination stress. Experimental results show few variations of the oxide trapped charges are generated during stress, which is consistent with the proposed mechanism.
Keywords:  indium-zinc oxide      thin film transistor      illumination      low frequency noise  
Received:  12 December 2017      Revised:  19 January 2018      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  71.23.Cq (Amorphous semiconductors, metallic glasses, glasses)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
Fund: Project supported by the Opening Fund of Key Laboratory of Silicon Device Technology,Chinese Academy of Sciences (Grant No.KLSDTJJ2018-6),the National Natural Science Foundation of China (Grant No.61574048),the Science and Technology Research Project of Guangdong Province,China (Grant No.2015B090912002),and the Pearl River S&T Nova Program of Guangzhou City,China (Grant No.201710010172).
Corresponding Authors:  Yuan Liu     E-mail:  Liuyuan@ceprei.com

Cite this article: 

Li Wang(王黎), Yuan Liu(刘远), Kui-Wei Geng(耿魁伟), Ya-Yi Chen(陈雅怡), Yun-Fei En(恩云飞) Degradation of current-voltage and low frequency noise characteristics under negative bias illumination stress in InZnO thin film transistors 2018 Chin. Phys. B 27 068504

[1] Lan L, Xiong N, Xiao P, Li M, Xu H, Yao R and Wen Sand Peng J 2013 Appl. Phys. Lett. 102 242102
[2] Fortunato E, Barquinha P and and Martins R 2012 Adv. Mater. 24 2945
[3] Lee K H, Ji S J, Son K S and Park J S 2009 Appl. Phys. Lett. 95 1309
[4] Tang L F, Lu H and Ren F 2016 Chin. Phys. Lett. 33 038502
[5] Huang X, Wu C, Lu H and Ren F 2012 Appl. Phys. Lett. 100 243505
[6] Chang G W, Chang T C, Jhu J C and Tsai T M 2014 IEEE Electron. Dev. Lett. 61 2119
[7] Nomura K, Kamiya T, Hirano M and and Hosono H 2009 Appl. Phys. Lett. 95 013502
[8] Chowdhury M D H, Migliorato P and and Jang J 2011 Appl. Phys. Lett. 98 153511
[9] Chowdhury M D H, Ryu S H, Migliorato P and and Jang J 2011 J. Appl. Phys. 110 114503
[10] Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Jian F Y and Tsai M Y 2011 Thin Solid Films 520 1422
[11] Nomura K, Kamiya T and Hosono H 2011 Appl. Phys. Lett. 99 488
[12] Gwang Um J, Mativenga M, Migliorato P and Jang J 2012 Appl. Phys. Lett. 101 468
[13] Oh H, Yoon S, Ryu M K, Hwang C, Yang S and Park S K 2010 Appl. Phys. Lett. 97 488
[14] Migliorato P, Md D H C, Gwang Um J and Seok M 2012 Appl. Phys. Lett. 101 2945
[15] Tseng Y C, Huang W M, Spears E, Spooner D, Ngo D and Ford J M 2002 IEEE Electron Dev. Lett. 20 54
[16] Fung T C, Baek G and Kanicki J 2010 J. Appl. Phys. 108 074518
[17] Liu Y, Chen R S, Li B, En Y F and Chen Y Q 2018 IEEE Trans. Electron. Dev. 65 356
[18] Kim H, Choi D, Park S, Park K, Park H W, Chung K B and Kwon J Y 2017 Appl. Phys. Lett. 110 232104
[19] Liu L, Mei Z, Tang A, Azarov A, Kuznetsov K, Xue Q K and Du X 2016 Phys. Rev. B 93 235305
[20] Nomura K, Kamiya T, Yanagi H, Ikenaga E, Yang K, Kobayashi K, Hirano M and Hosono H 2008 Appl. Phys. Lett. 92 202117
[21] Fung T C, Back G and Kanicki 2010 J. Appl. Phys. 108 074518
[22] Billah M M, Chowdhury M D H, Mativenga M, Um J G, Mruthyunjaya R K and Heiler G N 2016 IEEE Electron. Dev. Lett. 37 735
[23] Kamiya T, Nomura K and and Hosono H 2009 Phys. Status Solidi A 206 860
[24] Kamiya T, Nomura K, Hirano M and Hosono H 2008 Phys. Status Solidi C 5 3098
[25] Ryu B, Noh H K, Choi E A and Chang K J 2010 Appl. Phys. Lett. 97 022108
[26] Ji K H, Kim J I, Jung H Y, Park S Y, Choi R, Mo Y G and Jeong J K 2011 Microelectronic Engineering 88 1412
[27] Kim J H, Kim U K, Chung Y J, Ji S J, et al. 2011 Appl. Phys. Lett. 98 488
[28] Kim Y, Kim S, Kim W, Bae M, Jeong H K, Kong D, Choi S, Kim D M and Kim D H 2012 IEEE Trans. Electron. Dev. 59 2699
[29] Nomura K, Kamiya T and Hosono H 2011 Appl. Phys. Lett. 99 053505
[30] McWhorter P J and Winokur P S 1986 Appl. Phys. Lett. 48 133
[31] Kouvatsos D N, Davidovic V, Papaioannou G J, Stojadinovic N, Michalas L, Exarchos M, Voutsas A T and Goustoridis D 2004 Microelectronics Reliability 44 1631
[32] Loannidis E G, Tsormpatzoglou A and Tassos D H 2010 J. Appl. Phys. 108 106103
[33] Chen W T, Lo S Y, Kao S C, Zan H W, Tsai C C, Lin J H, Fang C H and Lee C C 2011 IEEE Electron. Dev. Lett. 32 1552
[34] Liu Y, Wu W J, Qiang Lei, Wang L, En Y F and Li B 2015 Chin. Phys. Lett. 32 088506
[35] Hung K K, Ko P K, Hu C and Cheng Y C 1990 IEEE Trans. Electron. Dev. 37 654
[36] Liu Y, Wu W J, Li B, En Y F, Wang L and Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese)
[37] Ioannidis E G, Tsormpatzoglou A, Tassis D H, Dimitriadis C A, Templier F and Kamarinos G 2010 J. Appl. Phys. 108 106103
[38] Tsormpatzoglou A, As N, Mahmoudabadi F, Choi N, Hatalis M K and Dimitriadis C A 2013 IEEE Electron. Dev. Lett. 34 1403
[39] Liu Y, Chen H B, Liu Y R, Wang X, En Y F, Li B and Lu Y D 2015 Chin. Phys. B 24 088503
[1] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[2] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[3] Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors
Wenxing Huo(霍文星), Zengxia Mei(梅增霞), Yicheng Lu(卢毅成), Zuyin Han(韩祖银), Rui Zhu(朱锐), Tao Wang(王涛), Yanxin Sui(隋妍心), Huili Liang(梁会力), Xiaolong Du(杜小龙). Chin. Phys. B, 2019, 28(8): 087302.
[4] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
[5] Positive gate bias stress-induced hump-effect in elevated-metal metal-oxide thin film transistors
Dong-Yu Qi(齐栋宇), Dong-Li Zhang(张冬利), Ming-Xiang Wang(王明湘). Chin. Phys. B, 2017, 26(12): 128101.
[6] Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor
Yu-Rong Liu(刘玉荣), Gao-Wei Zhao(赵高位), Pai-To Lai(黎沛涛), Ruo-He Yao(姚若河). Chin. Phys. B, 2016, 25(8): 088503.
[7] Anisotropic transport properties in the phase-separated La0.67Ca0.33MnO3/NdGaO3 (001) films
Hong-Rui Zhang(张洪瑞), Yuan-Bo Liu(刘渊博), Shuan-Hu Wang(王拴虎), De-Shun Hong(洪德顺), Wen-Bin Wu(吴文彬), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2016, 25(7): 077306.
[8] Technology demonstration of a novel poly-Si nanowire thin film transistor
Libin Liu(刘立滨), Renrong Liang(梁仁荣), Bolin Shan(单柏霖), Jun Xu(许军), Jing Wang(王敬). Chin. Phys. B, 2016, 25(11): 118504.
[9] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao (谢应涛), Ouyang Shi-Hong (欧阳世宏), Wang Dong-Ping (王东平), Zhu Da-Long (朱大龙), Xu Xin (许鑫), Tan Te (谭特), Fong Hon-Hang (方汉铿). Chin. Phys. B, 2015, 24(9): 096803.
[10] Low frequency noise and radiation response in the partially depleted SOI MOSFETs with ion implanted buried oxide
Liu Yuan (刘远), Chen Hai-Bo (陈海波), Liu Yu-Rong (刘玉荣), Wang Xin (王信), En Yun-Fei (恩云飞), Li Bin (李斌), Lu Yu-Dong (陆裕东). Chin. Phys. B, 2015, 24(8): 088503.
[11] Influence of white light illumination on the performance of a-IGZO thin film transistor under positive gate-bias stress
Tang Lan-Feng (汤兰凤), Yu Guang (于广), Lu Hai (陆海), Wu Chen-Fei (武辰飞), Qian Hui-Min (钱慧敏), Zhou Dong (周东), Zhang Rong (张荣), Zheng You-Dou (郑有炓), Huang Xiao-Ming (黄晓明). Chin. Phys. B, 2015, 24(8): 088504.
[12] Investigation on the intensity noise characteristics of the semiconductor ring laser
Kang Ze-Xin (康泽新), Cai Xin-Lun (蔡鑫伦), Wen Xiao-Dong (温晓东), Liu Chao (刘超), Jian Shui-Sheng (简水生), Yu Si-Yuan (余思远). Chin. Phys. B, 2014, 23(2): 024203.
[13] A simple and accurate method to measure program/erase speed in a memory capacitor structure
Jin Lin (金林), Zhang Man-Hong (张满红), Huo Zong-Liang (霍宗亮), Wang Yong (王永), Yu Zhao-An (余兆安), Jiang Dan-Dan (姜丹丹), Chen Jun-Ning (陈军宁), Liu Ming (刘明). Chin. Phys. B, 2013, 22(1): 018501.
[14] High-photosensitivity polymer thin-film transistors based on poly(3-hexylthiophene)
Liu Yu-Rong (刘玉荣), Lai Pei-Tao (黎沛涛), Yao Ruo-He (姚若河 ). Chin. Phys. B, 2012, 21(8): 088503.
[15] Numerical study on the dependence of ZnO thin-film transistor characteristics on grain boundary position
Zhang An(张安), Zhao Xiao-Ru(赵小如), Duan Li-Bing(段利兵), Liu Jin-Ming(刘金铭), and Zhao Jian-Lin(赵建林). Chin. Phys. B, 2011, 20(5): 057201.
No Suggested Reading articles found!