Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 086102    DOI: 10.1088/1674-1056/28/8/086102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Impeding anion exchange to improve composition stability of CsPbX3 (X=Cl, Br) nanocrystals through facilely fabricated Cs4PbX6 shell

Zhaohui Shen(申朝晖)1,2, Pengjie Song(宋鹏杰)1,2, Bo Qiao(乔泊)1,2, Jingyue Cao(曹靖玥)1,2, Qiongyu Bai(白琼宇)1,2, Dandan Song(宋丹丹)1,2, Zheng Xu(徐征)1,2, Suling Zhao(赵谡玲)1,2, Gaoqian Zhang(张高倩)1,2, Yuanjun Wu(吴元均)3
1 Key Laboratory of Luminescence and Optical Information(Beijing Jiaotong University), Ministry of Education, Beijing 100044, China;
2 Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China;
3 Shenzhen China Star Optoelectronics Technology Co., Ltd., Shenzhen 518132, China
Abstract  

Inorganic lead halide perovskite nanocrystals (NCs) with superior photoelectric properties are expected to have excellent performance in many fields. However, the anion exchange changes their features and is unfavorable for their applications in many fields. Hence, impeding anion exchange is important for improving the composition stability of inorganic lead halide perovskite NCs. Herein, CsPbX3 (X=Cl, Br) NCs are coated with Cs4PbX6 shell to impede anion exchange and reduce anion mobility. The Cs4PbX6 shell is facily fabricated on CsPbX3 NCs through high temperature injection method. Anion exchange experiments demonstrate that the Cs4PbX6 shell completely encapsulates CsPbX3 NCs and greatly improves the composition stability of CsPbX3 NCs. Moreover, our work also sheds light on the potential design approaches of various heterostructures to expand the application of CsPbM3 (M=Cl, Br, I) NCs.

Keywords:  CsPbX3@Cs4PbX6      anion exchange      composition stability      core-shell constructure  
Received:  30 May 2019      Revised:  12 June 2019      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  62.23.Eg (Nanodots)  
  73.63.Bd (Nanocrystalline materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474018, 61704007, and 61575019), the National Key Research and Development Program of China (Grant No. 2017YFB0404501), the Fundamental Research Funds for the Central Universities, China (Grant No. 2017RC034), and the Shenzhen China Star Optoelectronics Technology Co., Ltd.

Corresponding Authors:  Suling Zhao     E-mail:  slzhao@bjtu.edu.cn

Cite this article: 

Zhaohui Shen(申朝晖), Pengjie Song(宋鹏杰), Bo Qiao(乔泊), Jingyue Cao(曹靖玥), Qiongyu Bai(白琼宇), Dandan Song(宋丹丹), Zheng Xu(徐征), Suling Zhao(赵谡玲), Gaoqian Zhang(张高倩), Yuanjun Wu(吴元均) Impeding anion exchange to improve composition stability of CsPbX3 (X=Cl, Br) nanocrystals through facilely fabricated Cs4PbX6 shell 2019 Chin. Phys. B 28 086102

[1] Abhishek Swarnkar E M S, Marshall A R, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T and Luther J M 2016 Science 07 92
[2] Liu Y, Li F, Wang H L, Zhan Q, Liu Q L and Xia Z G 2018 Chem. Mater. 30 8546
[3] Pan J, Sarmah S P, Murali B, Dursun I, Parida M R, Liu J K, Sinatra L, Alyami N, Zhao C, Alarousu E, Ng T K, Ooi B S, Bakr O M and Mohammed O F 2015 J. Phys. Chem. Lett. 6 5027
[4] Sun S B, Yuan D, Xu D, Wang A F and Deng Z T 2016 ACS Nano 10 3648
[5] Pellet N, Teuscher J, Maier J and Grätzel M 2015 Chem. Mater. 27 2181
[6] Akkerman Q A, D'Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M and Manna L 2015 J. Am. Chem. Soc. 137 10276
[7] Stam W V D, Geuchies J J, Altantzis T, Van den Bos K H W, Meeldijk J D, Aert S V, Bals S, Vanmaekelbergh D and Donega C D M 2017 J. Am. Chem. Soc. 139 4087
[8] Gao D, Qiao B, Xu Z, Song D D, Song P J, LiangZ Q, Shen Z H, Cao J Y, Zhang J J and Zhao S L 2017 J. Phys. Chem. C 121 20387
[9] Wang C J, Chesman A S R and Jasieniak J J 2017 Chem. Commun. 53 232
[10] Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z and Zeng H B 2016 Adv. Funct. Mater. 26 2435
[11] Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D and Yu W W 2016 Adv. Mater. 28 10088
[12] Qiao B, Song P J, Cao J Y, Zhao S L, Shen Z H, Gao D, Liang Z Q, Xu Z, Song D D and Xu X R 2017 Nanotechnology 28 445602
[13] Chen W W, Hao J, Hu W, Zang Z, Tang X, Fang L, Niu T and Zhou M 2017 Small 13 1604085
[14] Zarei M and Zarei M 2018 Small 14 1800912
[15] Zhang Y H, Saidaminov M I, Dursun I, Yang H Z, Murali B, Alarousu E, Yengel E, Alshankiti B A, Bakr O M and Mohammed O F 2017 J. Phys. Chem. Lett. 8 961
[16] Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M and Manna L 2017 Nano Lett. 17 1924
[17] Xu J W, Huang W X, Li P Y, Onken D K, Dun C C, Guo Y, Ucer K B, Lu C, Wang H Z, Geyer S M, Williams R T and Carroll D L 2017 Adv. Mater. 29 1703703
[18] Jia C, Li H, Meng X M and Li H B 2018 Chem. Commun. (Camb) 54 6300
[19] Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D and Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824
[20] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
[21] Liu Z K, Bekenstein Y, Ye X C, Nguyen S C, Swabeck J S, Zhang D D, Lee S T, Yang P D, Ma W L and Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309
[1] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[2] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[3] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[4] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[5] Growth and aggregation of Cu nanocrystals on ionic liquid surfaces
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔). Chin. Phys. B, 2020, 29(6): 066801.
[6] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[7] Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes
Haochen Liu(刘皓宸), Huaying Zhong(钟华英), Fankai Zheng(郑凡凯), Yue Xie(谢阅), Depeng Li(李德鹏), Dan Wu(吴丹), Ziming Zhou(周子明), Xiao-Wei Sun(孙小卫), Kai Wang(王恺). Chin. Phys. B, 2019, 28(12): 128504.
[8] Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政). Chin. Phys. B, 2018, 27(8): 086101.
[9] Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions
Xue Li(李雪), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Xuan Zhao(赵宣), Chen Fu(付晨), Jing-Yan Wu(吴静燕). Chin. Phys. B, 2018, 27(5): 056104.
[10] Zn-Cu-codoped SnO2 nanoparticles:Structural, optical, and ferromagnetic behaviors
Syed Zulfiqar, Zainab Iqbal, Jianguo Lü(吕建国). Chin. Phys. B, 2017, 26(12): 126104.
[11] Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method
Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲). Chin. Phys. B, 2017, 26(6): 063601.
[12] Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Chen Fu(付晨), Xue Li(李雪). Chin. Phys. B, 2017, 26(6): 066102.
[13] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[14] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[15] Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot
Jin Cao(曹进), Jing-Wei Xie(谢婧薇), Xiang Wei(魏翔), Jie Zhou(周洁), Chao-Ping Chen(陈超平), Zi-Xing Wang(王子兴), Chulgyu Jhun(田哲圭). Chin. Phys. B, 2016, 25(12): 128502.
No Suggested Reading articles found!