CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials |
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微) |
School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract A dualband terahertz (THz) absorber including periodically distributed cross-shaped graphene arrays and a gold layer spaced by a thin dielectric layer is investigated. Numerical results reveal that the THz absorber displays two perfect absorption peaks. To elucidate the resonant behavior, the LC model is introduced to fit the spectra. Moreover, the strength and linewidth of the absorption peak can be effectively tuned with structural parameters and the relaxation time of graphene. Owing to its rotational symmetry, this THz absorber exhibits polarization insensitivity. Our designed absorber is a promising candidate in applications of tunable optical sensors and optical filters.
|
Received: 24 December 2018
Revised: 20 March 2019
Accepted manuscript online:
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant Nos. 162102210164 and 1721023100107) and the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002). |
Corresponding Authors:
Chunzhen Fan
E-mail: chunzhen@zzu.edu.cn
|
Cite this article:
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微) Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials 2019 Chin. Phys. B 28 076105
|
[32] |
Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G and Wang F 2011 Nature 471 617
|
[1] |
Landy N I, Sajuyigbe S and Mock J J 2008 Phys. Rev. Lett. 100 207402
|
[33] |
Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J and de Abajo F J G 2013 ACS Nano 7 2388
|
[2] |
Ye Y Q, Jin Y and He S 2010 J. Opt. Soc. Am. B 27 498
|
[34] |
Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T and Wu S W 2018 Nat. Photonics 12 430
|
[3] |
Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F and Zhai X 2014 J. Lightwave. Technol. 32 1183
|
[35] |
Near R, Tabor C, Duan J and El-Sayed M 2012 Nano Lett. 12 2158
|
[4] |
Luo C, Li D, Luo Q, Yue J, Gao P, Yao J and Ling F 2015 J. Alloys Compd. 652 18
|
[36] |
Chen W T, Chen C J, Wu P C, Sun S, Zhou L, Guo G Y, Hsiao C T, Yang K Y, Zheludev N I and Tsai D P 2011 Opt. Express 19 12837
|
[5] |
Huang L and Chen H T 2013 Terahertz Sci. Technol. 6 26
|
[37] |
Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, Javier F, de Abajo F J G, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299
|
[6] |
Ra'Di Y, Simovski C R and Tretyakov S A 2015 Phys. Rev. Appl. 3 037001
|
[38] |
Yu X, Shi L, Han D, Zi J and Broun P V 2010 Adv. Funct. Mater. 20 1910
|
[7] |
Hussain S, Woo M J and Jang J H 2012 Appl. Phys. Lett. 101 091103
|
[39] |
Wang B X, Wang G Z and Sang T 2016 J. Phys. D: Appl. Phys. 49 165307
|
[8] |
Shen X and Cui T J 2012 J. Opt. 14 114012
|
[9] |
Li X, Liu H, Sun Q and Huang N 2015 Photonics Nanostruct. Fundam. Appl. 15 81
|
[10] |
Liu S, Chen H and Cui T J 2015 Appl. Phys. Lett. 106 151601
|
[11] |
Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517
|
[12] |
He J N, Wang J Q, Fan C Z and Liang E J 2015 Opt. Express 23 6083
|
[13] |
Arik K, Abdollahramezani S and Khavasi A 2017 Plasmonics 12 393
|
[14] |
Vakil A and Engheta N 2011 Science 332 1291
|
[15] |
Fallahi A and Perruisseau-Carrier J 2012 J. Phys. Rev. B 86 195408
|
[16] |
Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017
|
[17] |
Luo X, Qiu T and Lu W 2013 Mat. Sci. Eng. R 74 351
|
[18] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A 2010 Nat. Photonics 4 611
|
[19] |
Zhang Y, Feng Y, Zhu B, Zhao J and Jiang T 2014 Opt. Express 22 22743
|
[20] |
Wang B X, Wang G Z and Sang T 2016 J. Phys. D: Appl. Phys. 49 165307
|
[21] |
Logan D L 2011 A First Course in the Finite Element Method (6th edn.) (Boston: Cengage Learning)
|
[22] |
Thongrattanasiri S, Koppens F and de Abajo F J G 2012 Phys. Rev. Lett. 108 047401
|
[23] |
Yao Y, Kats M A, Genevet P, Song N, Yu Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
|
[24] |
Gusynin V P, Sharapov S G and Carbotte J P 2006 J. Phys.: Condens. Matter 19 026222
|
[25] |
Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
|
[26] |
Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
|
[27] |
Hanson G W 2008 J. Appl. Phys. 103 064302
|
[28] |
Zhou J, Zhang L, Tuttle G, Koschny T and Soukoulis C M 2006 Phys. Rev. B 73 041101
|
[29] |
Novotny L 2007 Phys. Rev. Lett. 98 266802
|
[30] |
Koppens F H L, Chang D E and Javier G D A F 2011 Nano Lett. 11 3370
|
[31] |
Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2016 Plasmonics 11 1597
|
[32] |
Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G and Wang F 2011 Nature 471 617
|
[33] |
Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J and de Abajo F J G 2013 ACS Nano 7 2388
|
[34] |
Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T and Wu S W 2018 Nat. Photonics 12 430
|
[35] |
Near R, Tabor C, Duan J and El-Sayed M 2012 Nano Lett. 12 2158
|
[36] |
Chen W T, Chen C J, Wu P C, Sun S, Zhou L, Guo G Y, Hsiao C T, Yang K Y, Zheludev N I and Tsai D P 2011 Opt. Express 19 12837
|
[37] |
Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, Javier F, de Abajo F J G, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299
|
[38] |
Yu X, Shi L, Han D, Zi J and Broun P V 2010 Adv. Funct. Mater. 20 1910
|
[39] |
Wang B X, Wang G Z and Sang T 2016 J. Phys. D: Appl. Phys. 49 165307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|