INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
First-principles insight into Li and Na ion storage in graphene oxide |
Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲) |
Institute of Physics and Communication & Electronics, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract The structural, electronic, and adsorption properties of Li/Na ions on graphene decorated by epoxy groups are investigated by first-principles calculations based on density functional theory. Our results show that the concentration of epoxy groups remarkably affects the structural and electronic properties of graphene. The bandgaps change monotonically from 0.16 eV to 3.35 eV when the O coverage increases from 12.5% to 50% (O/C ratio). Furthermore, the highest lithiation potential of 2.714 V is obtained for the case of graphene oxide (GO) with 37.5% O coverage, while the highest sodiation potential is 1.503 V for GO with 12.5% O coverage. This clearly demonstrates that the concentration of epoxy groups has different effects on Li and Na storage in GO. Our results provide a new insight into enhancing the Li and Na storage by tuning the concentration of epoxy groups on GO.
|
Received: 22 December 2018
Revised: 07 May 2019
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11764019), the Education Department of Jiangxi Province, China (Grant No. GJJ170186), and Science Foundation for PHDs of Jiangxi Normal University, China (Grant No. 7957). |
Corresponding Authors:
Xue-Ling Lei
E-mail: xueling@mail.ustc.edu.cn
|
Cite this article:
Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲) First-principles insight into Li and Na ion storage in graphene oxide 2019 Chin. Phys. B 28 078201
|
[1] |
Gupta S K, Soni H R and Jha P K 2013 AIP Adv. 3 032117
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[3] |
Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530
|
[4] |
Ritter K A and Lyding J W 2009 Nat. Mater. 8 235
|
[5] |
Zhou X, Miao L, Gu L and Chen J 2015 Chin. Phys. Lett. 32 26102
|
[6] |
Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
|
[7] |
Wu J, Becerril H A, Bao Z, Liu Z, Chen Y and Peumans P 2008 Appl. Phys. Lett. 92 263302
|
[8] |
Pei S and Cheng H M 2012 Carbon 50 3210
|
[9] |
Huang H M, Li Z B, She J C and Wang W L 2012 J. Appl. Phys. 111 054317
|
[10] |
Eigler S and Hirsch A 2014 Angew. Chem. Int. Ed. 53 7720
|
[11] |
Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228
|
[12] |
Mao S, Pu H and Chen J 2012 RSC Adv. 2 2643
|
[13] |
Loh K P, Bao Q, Eda G and Chhowalla M 2010 Nat. Chem. 2 1015
|
[14] |
Dabhi S D, Gupta S D and Jha P K 2014 J. Appl. Phys. 115 203517
|
[15] |
Wu X, Sprinkle M, Li X, Ming F, Berger C and de W A 2008 Phys. Rev. Lett. 101 026801
|
[16] |
Wei Z et al. 2010 Science 328 1373
|
[17] |
Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
|
[18] |
Robinson J T, Perkins F K, Snow E S, Wei Z and Sheehan P E 2008 Nano Lett. 8 3137
|
[19] |
Lu G, Ocola L E and Chen J 2009 Nanotechnol. 20 445502
|
[20] |
Zhang J and Zhao X S 2012 J. Phys. Chem. C 116 5420
|
[21] |
Heyong H, Klinowski J, Forster M and Lerf A 1998 Chem. Phys. Lett. 287 53
|
[22] |
Lerf A, Heyong H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477
|
[23] |
Guilhon I, Bechstedt F, Botti S, Marques M and Teles L K 2017 Phys. Rev. B 95 245427
|
[24] |
Jana M, Saha S, Khanra P, Murmu N C, Srivastava S K, Kuila T and Lee J H 2014 Mater. Sci. Eng. B 186 33
|
[25] |
Nasehnia F, Lima S M, Seifi M and Mehran E 2016 Comput. Mater. Sci. 114 112
|
[26] |
Rosas J J H, Gutiérrez R E R, Morales A E and Anota E C 2011 J. Mol. Model 17 1133
|
[27] |
Liu B, Sun H J, Peng T J and Ji G F 2015 JOM 67 375
|
[28] |
Peng Q, Han L, Lian J, Wen X D, Liu S, Chen Z F, Koratkara N and De S 2015 Phys. Chem. Chem. Phys. 17 19484
|
[29] |
Tran N T T, Lin S Y, Glukhova O E and Lin M F 2016 RSC. Adv. 6 24458
|
[30] |
Rogers G W and Liu J Z 2012 J. Am. Chem. Soc. 134 1250
|
[31] |
Zhang Y, Fang D Q, Zhang S L, Wen Y H and Zhu Z Z 2014 Europhys. Lett. 105 37005
|
[32] |
Yan J A, Xian L D and Chou M Y 2009 Phys. Rev. Lett. 103 086802
|
[33] |
Wang L, Sun Y Y, Lee K, West D, Chen Z F, Zhao J J and Zhang S B 2010 Phys. Rev. B 82 161406
|
[34] |
Arm, M and Tarascon J M 2008 Nature 451 652
|
[35] |
Guerard D and Herold A 1975 Carbon 13 337
|
[36] |
Cui L F, Hu L, Choi J W and Cui Y 2010 ACS. Nano 4 3671
|
[37] |
Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J and Yushin G 2010 Nat. Mater. 9 353
|
[38] |
Meunier V, Kephart J, Rol C and Bernholc J 2002 Phys. Rev. Lett. 88 075506
|
[39] |
Luo J, Zhao X, Wu J, Jang H D, Kung H H and Huang J 2012 J. Phys. Chem. Lett. 3 1824
|
[40] |
Liu N, Wu H, McDowell M T, Yao Y, Wang C and Cui Y 2012 Nano Lett. 12 3315
|
[41] |
Mukherjee R, Thomas A V, Datta D, Singh E, Li J, Eksik O, Shenoy V B and Koratkar N 2014 Nat. Commun. 5 3710
|
[42] |
Wang D W, Sun C H, Zhou G M, Li F, Wen L, Donose B C, Lu G Q, Cheng H M and Gentle I R 2013 J. Mater. Chem. A 1 3607
|
[43] |
Chouhan R K and Raghani P 2015 J. Appl. Phys. 118 125101
|
[44] |
Kumar N A, Gaddam R R, Varanasi S R, Yang D F, Bhatia S K and Zhao X S 2016 Electrochim. Acta 214 319
|
[45] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[46] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[47] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[48] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[49] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[50] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[51] |
Robledo C B, Otero M, Luque G, Cámara O, Barraco D, Rojas M I and Leiva E P M 2014 Electrochim. Acta 140 232
|
[52] |
Trucano P and Chen R 1975 Nature 258 136
|
[53] |
Stournara M E and Shenoy V B 2011 J. Power Sources 196 5697
|
[54] |
Aydinol M K, Kohan A F and Ceder G 1997 J. Power Sources 68 664
|
[55] |
Nasehnia F and Seifi M 2015 J. Appl. Phys. 118 014304
|
[56] |
Kuo S L, Liu W R, Kuo C P, Wu N L and Wu H C 2013 J. Power Sources 244 552
|
[57] |
Tsai P C, Chung S C, Linb S K and Yamada A 2015 J. Mater. Chem. A 3 9763
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|