Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078201    DOI: 10.1088/1674-1056/28/7/078201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

First-principles insight into Li and Na ion storage in graphene oxide

Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲)
Institute of Physics and Communication & Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  

The structural, electronic, and adsorption properties of Li/Na ions on graphene decorated by epoxy groups are investigated by first-principles calculations based on density functional theory. Our results show that the concentration of epoxy groups remarkably affects the structural and electronic properties of graphene. The bandgaps change monotonically from 0.16 eV to 3.35 eV when the O coverage increases from 12.5% to 50% (O/C ratio). Furthermore, the highest lithiation potential of 2.714 V is obtained for the case of graphene oxide (GO) with 37.5% O coverage, while the highest sodiation potential is 1.503 V for GO with 12.5% O coverage. This clearly demonstrates that the concentration of epoxy groups has different effects on Li and Na storage in GO. Our results provide a new insight into enhancing the Li and Na storage by tuning the concentration of epoxy groups on GO.

Keywords:  graphene oxide      lithiation potential      sodiation potential      first-principles  
Received:  22 December 2018      Revised:  07 May 2019      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  73.22.Pr (Electronic structure of graphene)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11764019), the Education Department of Jiangxi Province, China (Grant No. GJJ170186), and Science Foundation for PHDs of Jiangxi Normal University, China (Grant No. 7957).

Corresponding Authors:  Xue-Ling Lei     E-mail:  xueling@mail.ustc.edu.cn

Cite this article: 

Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲) First-principles insight into Li and Na ion storage in graphene oxide 2019 Chin. Phys. B 28 078201

[1] Gupta S K, Soni H R and Jha P K 2013 AIP Adv. 3 032117
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530
[4] Ritter K A and Lyding J W 2009 Nat. Mater. 8 235
[5] Zhou X, Miao L, Gu L and Chen J 2015 Chin. Phys. Lett. 32 26102
[6] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[7] Wu J, Becerril H A, Bao Z, Liu Z, Chen Y and Peumans P 2008 Appl. Phys. Lett. 92 263302
[8] Pei S and Cheng H M 2012 Carbon 50 3210
[9] Huang H M, Li Z B, She J C and Wang W L 2012 J. Appl. Phys. 111 054317
[10] Eigler S and Hirsch A 2014 Angew. Chem. Int. Ed. 53 7720
[11] Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228
[12] Mao S, Pu H and Chen J 2012 RSC Adv. 2 2643
[13] Loh K P, Bao Q, Eda G and Chhowalla M 2010 Nat. Chem. 2 1015
[14] Dabhi S D, Gupta S D and Jha P K 2014 J. Appl. Phys. 115 203517
[15] Wu X, Sprinkle M, Li X, Ming F, Berger C and de W A 2008 Phys. Rev. Lett. 101 026801
[16] Wei Z et al. 2010 Science 328 1373
[17] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[18] Robinson J T, Perkins F K, Snow E S, Wei Z and Sheehan P E 2008 Nano Lett. 8 3137
[19] Lu G, Ocola L E and Chen J 2009 Nanotechnol. 20 445502
[20] Zhang J and Zhao X S 2012 J. Phys. Chem. C 116 5420
[21] Heyong H, Klinowski J, Forster M and Lerf A 1998 Chem. Phys. Lett. 287 53
[22] Lerf A, Heyong H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477
[23] Guilhon I, Bechstedt F, Botti S, Marques M and Teles L K 2017 Phys. Rev. B 95 245427
[24] Jana M, Saha S, Khanra P, Murmu N C, Srivastava S K, Kuila T and Lee J H 2014 Mater. Sci. Eng. B 186 33
[25] Nasehnia F, Lima S M, Seifi M and Mehran E 2016 Comput. Mater. Sci. 114 112
[26] Rosas J J H, Gutiérrez R E R, Morales A E and Anota E C 2011 J. Mol. Model 17 1133
[27] Liu B, Sun H J, Peng T J and Ji G F 2015 JOM 67 375
[28] Peng Q, Han L, Lian J, Wen X D, Liu S, Chen Z F, Koratkara N and De S 2015 Phys. Chem. Chem. Phys. 17 19484
[29] Tran N T T, Lin S Y, Glukhova O E and Lin M F 2016 RSC. Adv. 6 24458
[30] Rogers G W and Liu J Z 2012 J. Am. Chem. Soc. 134 1250
[31] Zhang Y, Fang D Q, Zhang S L, Wen Y H and Zhu Z Z 2014 Europhys. Lett. 105 37005
[32] Yan J A, Xian L D and Chou M Y 2009 Phys. Rev. Lett. 103 086802
[33] Wang L, Sun Y Y, Lee K, West D, Chen Z F, Zhao J J and Zhang S B 2010 Phys. Rev. B 82 161406
[34] Arm, M and Tarascon J M 2008 Nature 451 652
[35] Guerard D and Herold A 1975 Carbon 13 337
[36] Cui L F, Hu L, Choi J W and Cui Y 2010 ACS. Nano 4 3671
[37] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J and Yushin G 2010 Nat. Mater. 9 353
[38] Meunier V, Kephart J, Rol C and Bernholc J 2002 Phys. Rev. Lett. 88 075506
[39] Luo J, Zhao X, Wu J, Jang H D, Kung H H and Huang J 2012 J. Phys. Chem. Lett. 3 1824
[40] Liu N, Wu H, McDowell M T, Yao Y, Wang C and Cui Y 2012 Nano Lett. 12 3315
[41] Mukherjee R, Thomas A V, Datta D, Singh E, Li J, Eksik O, Shenoy V B and Koratkar N 2014 Nat. Commun. 5 3710
[42] Wang D W, Sun C H, Zhou G M, Li F, Wen L, Donose B C, Lu G Q, Cheng H M and Gentle I R 2013 J. Mater. Chem. A 1 3607
[43] Chouhan R K and Raghani P 2015 J. Appl. Phys. 118 125101
[44] Kumar N A, Gaddam R R, Varanasi S R, Yang D F, Bhatia S K and Zhao X S 2016 Electrochim. Acta 214 319
[45] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[46] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[47] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[48] Blochl P E 1994 Phys. Rev. B 50 17953
[49] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[50] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[51] Robledo C B, Otero M, Luque G, Cámara O, Barraco D, Rojas M I and Leiva E P M 2014 Electrochim. Acta 140 232
[52] Trucano P and Chen R 1975 Nature 258 136
[53] Stournara M E and Shenoy V B 2011 J. Power Sources 196 5697
[54] Aydinol M K, Kohan A F and Ceder G 1997 J. Power Sources 68 664
[55] Nasehnia F and Seifi M 2015 J. Appl. Phys. 118 014304
[56] Kuo S L, Liu W R, Kuo C P, Wu N L and Wu H C 2013 J. Power Sources 244 552
[57] Tsai P C, Chung S C, Linb S K and Yamada A 2015 J. Mater. Chem. A 3 9763
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!