CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor |
Hai-Bo Wang(王海波)1, Zhen-Lin Luo(罗震林)2, Yuan-Jun Yang(杨远俊)2, Qing-Qing Liu(刘清青)3, Si-Xia Hu(胡思侠)2, Meng-Meng Yang(杨蒙蒙)2, Chang-Qing Jin(靳常青)3, Chen Gao(高琛)2,4 |
1 Tonghua Normal University, Tonghua 134002, China;
2 National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China;
4 CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A new low temperature Pmmm (120 K) phase was found in high temperature superconductor Sr2CuO3+δ, which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) at Cu K-edge, the strong charge density redistribution and local lattice fluctuations around Cu site at the onset of phase transition were due to the occurrence of superconductive coherence, the redistribution and fluctuation finished at Tc. Finally, the electron-lattice interaction was mainly elaborated to understand the superconductivity of Sr2CuO3+δ.
|
Received: 30 November 2018
Revised: 12 March 2019
Accepted manuscript online:
|
PACS:
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
87.64.kd
|
(X-ray and EXAFS)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB922004/3, 2010CB934501, and 2009CB929502), the Funds of Jilin Province, China (Grant No. JJKH20180860KJ), the National Natural Science Foundation of China, and the Fundamental Research Funds for the Central Universities, China (Grant No. WK2310000043). The authors appreciate the beam time at BL14W1 and BL14B1 of Shanghai Synchrotron Radiation Facility. |
Corresponding Authors:
Zhen-Lin Luo, Chen Gao
E-mail: cgao@ustc.edu.cn;zlluo@ustc.edu.cn
|
Cite this article:
Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛) Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor 2019 Chin. Phys. B 28 056103
|
[1] |
Plakida N 2010 High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications (New York: Springer)
|
[2] |
Lanzara A 2001 Nature 412 510
|
[3] |
Orenstein J and Millis A J 2000 Science 288 468
|
[4] |
Vojta M 2009 Adv. Phys. 58 699
|
[5] |
Kohsaka Y, Taylor C, Wahl P, Schmidt A, Lee J, Fujita K, Alldredge J W, McElroy K, Lee J, Eisaki H, Uchida S, Lee D H and Davis J C 2008 Nature 454 1072
|
[6] |
Li Q, Hücker M, Gu G D, Tsvelik A M and Tranquada J M 2007 Phys. Rev. Lett. 99 067001
|
[7] |
Kim Y J, Gu G D, Gog T and Casa D 2008 Phys. Rev. B 77 064520
|
[8] |
Fan X B, Chen J X and Xiang S K 1991 Acta Phys. Sin. 40 298 (in Chinese)
|
[9] |
Shen X L, Cai Z, Shen C X, Lu W, Dong X L, Zhou F and Zhao Z X 2009 Chin. Phys. B 18 2893
|
[10] |
Guo Q Z and Shi P Z 2010 Chin. Phys. B 19 027401
|
[11] |
Zhang Y L, Liang J K, Rao G H, Cheng X R, Li K S, Lei L, Zheng D N and Xie S S 1990 Acta Phys. Sin. 39 154 (in Chinese)
|
[12] |
Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P and Kim E A 2010 Nature 466 347
|
[13] |
Parker C V, Aynajian P, da Silva N E H, Pushp A, Ono S, Wen J, Xu Z, Gu G and Yazdani A 2010 Nature 468 677
|
[14] |
Berg E, Fradkin E, Kivelson S A and Tranquada J 2009 New J. Phys. 11 115004
|
[15] |
Tranquada J M 2012 Phys. B: Condens. Matter 407 1771
|
[16] |
Emery V J, Kivelson S A and Tranquada J M 1999 Stripe Phases in High-temperature Superconductors (New York: Springer)
|
[17] |
Fabbris G, Hücker M, Gu G D, Tranquada J M and Haskel D 2013 Phys. Rev. B 88 060507
|
[18] |
Enoki M, Fujita M, Nishizaki T, Iikubo S, Singh D K, Chang S, Tranquada J M and Yamada K 2013 Phys. Rev. Lett. 110 017004
|
[19] |
Wang F, Wu X S and Jiang S S 2000 Acta Phys. Sin. 49 1541 (in Chinese)
|
[20] |
Aji V, Shekhter A and Varma C M 2010 Phys. Rev. B 81 064515
|
[21] |
Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q and Uchida S 2006 Phys. Rev. B 74 100506(R)
|
[22] |
Liu Q Q, Yang H, Yu Y, Yang L X, Yu R C, Li F Y, Jin C Q and Uchida S 2007 Phys. C Supercond. & Its Appl. 463-465 100
|
[23] |
Wang Y Y, Zhang H, Dravid V P, Marks L D, Han P D and Payne D A 1995 Phys. C: Supercond. 255 247
|
[24] |
Liu Y, Shen X, Liu QQ, Li X, Feng SM, Yu RC, Uchida S and Jin CQ 2014 Phys. C: Supercond. & Its Appl. 497 34
|
[25] |
Fink J, Schierle E, Weschke E, Geck J, Hawthorn D, Wadati H, Hu H H, Durr H A, Wizent N, Buchner B and Sawatzky G A 2009 Phys. Rev. B 79 100502
|
[26] |
Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A and Feng D L 2005 Nat. Phys. 1 155
|
[27] |
Haase J, Slichter C P, Stern R, Milling C T and Hinks D G 2000 J. Supercond. 13 723
|
[28] |
Da S N E, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le Tacon M and Yazdani A 2014 Science 343 393
|
[29] |
Ourmazd A Spence J C H 1987 Nature 329 425
|
[30] |
Shaw T M, Shivashankar S A, La Placa S J, Cuomo J J, McGuire T R, Roy R A, Kelleher K H and Yee D S 1988 Phys. Rev. B 37 9856
|
[31] |
Huecker M, Kim Young-June, Gu G D, Tranquada J M, Gaulin B D and Lynn J W 2005 Phys. Rev. B 71 094510
|
[32] |
Shimakawa Y, Jorgensen J D, Mitchell J F, Hunter B A, Shaked H, Hinks D G, Hitterman R L, Hiroi Z and Takano M 1994 Phys. C 228 73
|
[33] |
Zhang C J Oyanagi H 2009 Phys. Rev. B 79 064521
|
[34] |
Saini N L, Lanzara A, Missori M, Rossetti T, Bianconi A, Oyanagi H, Yamaguchi H, Oka K and Ito T 1997 Phys. Rev. B 55 12759
|
[35] |
Oyanagi H and Zhang C 2013 J. Phys.: Conf. Ser. 428 012042
|
[36] |
Bianconi A, Saini N L, Lanzara A, Missori M, Rossetti T, Oyanagi H, Yamaguchi H, Oka K and Ito T 1996 Phys. Rev. Lett. 76 3412
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|