Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056103    DOI: 10.1088/1674-1056/28/5/056103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor

Hai-Bo Wang(王海波)1, Zhen-Lin Luo(罗震林)2, Yuan-Jun Yang(杨远俊)2, Qing-Qing Liu(刘清青)3, Si-Xia Hu(胡思侠)2, Meng-Meng Yang(杨蒙蒙)2, Chang-Qing Jin(靳常青)3, Chen Gao(高琛)2,4
1 Tonghua Normal University, Tonghua 134002, China;
2 National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China;
4 CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China
Abstract  

A new low temperature Pmmm (120 K) phase was found in high temperature superconductor Sr2CuO3+δ, which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) at Cu K-edge, the strong charge density redistribution and local lattice fluctuations around Cu site at the onset of phase transition were due to the occurrence of superconductive coherence, the redistribution and fluctuation finished at Tc. Finally, the electron-lattice interaction was mainly elaborated to understand the superconductivity of Sr2CuO3+δ.

Keywords:  resonant x-ray diffraction      x-ray absorption fine structure      modulated phase      superconductivity  
Received:  30 November 2018      Revised:  12 March 2019      Accepted manuscript online: 
PACS:  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  05.70.Fh (Phase transitions: general studies)  
  87.64.kd (X-ray and EXAFS)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB922004/3, 2010CB934501, and 2009CB929502), the Funds of Jilin Province, China (Grant No. JJKH20180860KJ), the National Natural Science Foundation of China, and the Fundamental Research Funds for the Central Universities, China (Grant No. WK2310000043). The authors appreciate the beam time at BL14W1 and BL14B1 of Shanghai Synchrotron Radiation Facility.

Corresponding Authors:  Zhen-Lin Luo, Chen Gao     E-mail:  cgao@ustc.edu.cn;zlluo@ustc.edu.cn

Cite this article: 

Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛) Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor 2019 Chin. Phys. B 28 056103

[1] Plakida N 2010 High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications (New York: Springer)
[2] Lanzara A 2001 Nature 412 510
[3] Orenstein J and Millis A J 2000 Science 288 468
[4] Vojta M 2009 Adv. Phys. 58 699
[5] Kohsaka Y, Taylor C, Wahl P, Schmidt A, Lee J, Fujita K, Alldredge J W, McElroy K, Lee J, Eisaki H, Uchida S, Lee D H and Davis J C 2008 Nature 454 1072
[6] Li Q, Hücker M, Gu G D, Tsvelik A M and Tranquada J M 2007 Phys. Rev. Lett. 99 067001
[7] Kim Y J, Gu G D, Gog T and Casa D 2008 Phys. Rev. B 77 064520
[8] Fan X B, Chen J X and Xiang S K 1991 Acta Phys. Sin. 40 298 (in Chinese)
[9] Shen X L, Cai Z, Shen C X, Lu W, Dong X L, Zhou F and Zhao Z X 2009 Chin. Phys. B 18 2893
[10] Guo Q Z and Shi P Z 2010 Chin. Phys. B 19 027401
[11] Zhang Y L, Liang J K, Rao G H, Cheng X R, Li K S, Lei L, Zheng D N and Xie S S 1990 Acta Phys. Sin. 39 154 (in Chinese)
[12] Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P and Kim E A 2010 Nature 466 347
[13] Parker C V, Aynajian P, da Silva N E H, Pushp A, Ono S, Wen J, Xu Z, Gu G and Yazdani A 2010 Nature 468 677
[14] Berg E, Fradkin E, Kivelson S A and Tranquada J 2009 New J. Phys. 11 115004
[15] Tranquada J M 2012 Phys. B: Condens. Matter 407 1771
[16] Emery V J, Kivelson S A and Tranquada J M 1999 Stripe Phases in High-temperature Superconductors (New York: Springer)
[17] Fabbris G, Hücker M, Gu G D, Tranquada J M and Haskel D 2013 Phys. Rev. B 88 060507
[18] Enoki M, Fujita M, Nishizaki T, Iikubo S, Singh D K, Chang S, Tranquada J M and Yamada K 2013 Phys. Rev. Lett. 110 017004
[19] Wang F, Wu X S and Jiang S S 2000 Acta Phys. Sin. 49 1541 (in Chinese)
[20] Aji V, Shekhter A and Varma C M 2010 Phys. Rev. B 81 064515
[21] Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q and Uchida S 2006 Phys. Rev. B 74 100506(R)
[22] Liu Q Q, Yang H, Yu Y, Yang L X, Yu R C, Li F Y, Jin C Q and Uchida S 2007 Phys. C Supercond. & Its Appl. 463-465 100
[23] Wang Y Y, Zhang H, Dravid V P, Marks L D, Han P D and Payne D A 1995 Phys. C: Supercond. 255 247
[24] Liu Y, Shen X, Liu QQ, Li X, Feng SM, Yu RC, Uchida S and Jin CQ 2014 Phys. C: Supercond. & Its Appl. 497 34
[25] Fink J, Schierle E, Weschke E, Geck J, Hawthorn D, Wadati H, Hu H H, Durr H A, Wizent N, Buchner B and Sawatzky G A 2009 Phys. Rev. B 79 100502
[26] Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A and Feng D L 2005 Nat. Phys. 1 155
[27] Haase J, Slichter C P, Stern R, Milling C T and Hinks D G 2000 J. Supercond. 13 723
[28] Da S N E, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le Tacon M and Yazdani A 2014 Science 343 393
[29] Ourmazd A Spence J C H 1987 Nature 329 425
[30] Shaw T M, Shivashankar S A, La Placa S J, Cuomo J J, McGuire T R, Roy R A, Kelleher K H and Yee D S 1988 Phys. Rev. B 37 9856
[31] Huecker M, Kim Young-June, Gu G D, Tranquada J M, Gaulin B D and Lynn J W 2005 Phys. Rev. B 71 094510
[32] Shimakawa Y, Jorgensen J D, Mitchell J F, Hunter B A, Shaked H, Hinks D G, Hitterman R L, Hiroi Z and Takano M 1994 Phys. C 228 73
[33] Zhang C J Oyanagi H 2009 Phys. Rev. B 79 064521
[34] Saini N L, Lanzara A, Missori M, Rossetti T, Bianconi A, Oyanagi H, Yamaguchi H, Oka K and Ito T 1997 Phys. Rev. B 55 12759
[35] Oyanagi H and Zhang C 2013 J. Phys.: Conf. Ser. 428 012042
[36] Bianconi A, Saini N L, Lanzara A, Missori M, Rossetti T, Oyanagi H, Yamaguchi H, Oka K and Ito T 1996 Phys. Rev. Lett. 76 3412
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[13] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!