Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056104    DOI: 10.1088/1674-1056/28/5/056104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural and electrical properties of Ga-Te systems under high pressure

Youchun Wang(王友春), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Hui Xie(谢慧), Bingbing Liu(刘冰冰), Qiang Zhou(周强), Tian Cui(崔田)
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  

First-principles evolutionary calculation was performed to search for all probable stable Ga-Te compounds at extreme pressure. In addition to the well-known structures of P63/mmc and Fm-3m GaTe and I4/m Ga2Te5, several new structures were uncovered at high pressure, namely, orthorhombic I4/mmm GaTe2 and monoclinic C2/m GaTe3, and all the Ga-Te structures stabilize up to a maximum pressure of 80 GPa. The calculation of the electronic energy band indicated that the high-pressure phases of the Ga-Te system are metallic, whereas the low-pressure phases are semiconductors. The electronic localization functions (ELFs) of the Ga-Te system were also calculated to explore the bond characteristics. The results showed that a covalent bond is formed at low pressure, however, this bond disappears at high pressure, and an ionic bond is formed at extreme pressure.

Keywords:  density functional theory      Ga-Te system      electronic property  
Received:  16 January 2019      Revised:  21 March 2019      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  64.60.-i (General studies of phase transitions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305900 and 2016YFB0201204), the National Natural Science Foundation of China (Grant Nos. 51632002, 51572108, 11574109, 91745203, and 11634004), Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_15R23), and National Fund for Fostering Talents of Basic Science, China (Grant No. J1103202). Parts of calculations were performed in the High Performance Computing Center (HPCC) of Jilin University.

Corresponding Authors:  Fubo Tian, Tian Cui     E-mail:  tianfb@jlu.edu.cn;cuitian@jlu.edu.cn

Cite this article: 

Youchun Wang(王友春), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Hui Xie(谢慧), Bingbing Liu(刘冰冰), Qiang Zhou(周强), Tian Cui(崔田) Structural and electrical properties of Ga-Te systems under high pressure 2019 Chin. Phys. B 28 056104

[1] Balkanski M, Julien C and Emery J Y 1989 J. Power. Sources 26 615
[2] Sen S and Bose D N 1984 Solid. State. Commun. 50 39
[3] Hu P, Zhang J, Yoon M, Qiao X, Zhang X, Wei F, Tan P, Zheng W, Liu J, Wang X, Idrobo C, Geohegan D and Xia O K 2014 Nano Res. 7 694
[4] Bose D N and Pal S 2001 Phys. Rev. B 63 235321
[5] Klemm W and Vogel H U 1934 Z. Anorg. Allg. Chem. 219 45
[6] Newman P C, Brice J C and Wright H C 1961 Philips. Res. Reps. 16 41
[7] Antonopoulos J G, Karakostas T and Bleris G L 1981 J. Mater. Sci. 16 733
[8] Lisauskas V S and Yasutis V V 1972 Litov. Fiz. Sb. SSSR 12 1019
[9] Alapini F, Flahaut J, Guittard M, Jaulmes S and Julien-Pouzol M 1979 J. Solid. State. Chem. 28 309
[10] Brebner J L, Fischer G and Mooser E 1962 J. Phys. Chem. Solids 23 1417
[11] Yamamoto A, Syouji A, Goto T, Kulatov E, Ohno K, Kawazoe Y, Uchida K and Miura N 2001 Phys. Rev. B 64 035210
[12] Shenoy U S, Gupta U and Narang D S 2016 Chem. Phys. Lett. 651 148
[13] Zubiaga A, Garcıa J A and Plazaola F 2002 J. Appl. Phys. 92 7330
[14] Schwarz U, Syassen K and Kniep R 1995 J. Alloy. Compd. 224 212
[15] Huang G Y, Abdul-Jabbar N M and Wirth B D 2014 Acta Mater. 71 349
[16] Al-Orainy R H, Nagat A T, Hussein S A and Ebnalwaled A A 2015 International Research Journal of Engineering and Technology (IRJET) 2 816
[17] Newman P C 1962 J. Phys. Chem. Solids 23 19
[18] Shchennikov V V, Savchenko K V and Popova S V 2000 Phys. Solid. State. 42 1036
[19] Guizzetti G and Meloni F 1982 Il. Nuovo. Cimento. D 1 503
[20] Zhu H, Yin J and Xia Y 2010 Appl. Phys. Lett. 97 083504
[21] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[22] Glass C W, Oganov A R and Hansen N 2006 Comput. Phys. Commun. 175 713
[23] Oganov A R, Glass C W and Ono S 2006 Earth. Planet. Sci. Lett. 241 95
[24] Lyakhov A O, Oganov A R and Valle M 2010 Comput. Phys. Commun. 181 1623
[25] Oganov A R, Lyakhov A O and Valle M 2011 Accounts. Chem. Res. 44 227
[26] Lyakhov A O, Oganov A R and Stokes H T 2013 Comput. Phys. Commun. 184 1172
[27] Duan D F, Liu Y X and Tian F B 2015 Sci. Rep. 4 6968
[28] Duan D F, Huang X L and Tian F B 2015 Phys. Rev. B 91 180502
[29] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[30] Segall M D, Lindan P J D, Probert M J, Pickar C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys: Condens. Matter 14 2717
[31] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr.-Cryst. Mater. 220 567
[32] Vanderbilt D 1990 Phys. Rev. B 41 7892
[33] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[37] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[38] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[39] Jia W L, Cao Z Y, Wang L, Fu J Y, Chi X B, Gao W G and Wang L W 2013 Comput. Phys. Commun. 184 9
[40] Jia W L, Fu J Y, Cao Z Y, Wang L, . Chi X B, Gao W G and Wang L W 2013 J. Comput. Phys. 251 102
[41] Ghosh G, van de Walle A and Asta M 2008 Acta Mater. 56 3202
[42] Seeburrun N, Alswaidan I A and Fun H K A 2015 RSC. Adv. 5 68076
[43] Nassary M M, Gerges M K and Shaban H T 2003 Phys. B 337 130
[44] Bader R F W 1990 Atoms Molecules: A Quantum Theory (Clarendon: Oxford)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!