CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study |
Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛) |
Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The electronic structures and optical properties of β-Ga2O3 and Si- and Sn-doped β-Ga2O3 are studied using the GGA+U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-Ga2O3 are in good agreement with experimental results. Si- and Sn-doped β-Ga2O3 tend to form under O-poor conditions, and the formation energy of Si-doped β-Ga2O3 is larger than that of Sn-doped β-Ga2O3 because of the large bond length variation between Ga-O and Si-O. Si- and Sn-doped β-Ga2O3 have wider optical gaps than β-Ga2O3, due to the Burstein-Moss effect and the bandgap renormalization effect. Si-doped β-Ga2O3 shows better electron conductivity and a higher optical absorption edge than Sn-doped β-Ga2O3, so Si is more suitable as a dopant of n-type β-Ga2O3, which can be applied in deep-UV photoelectric devices.
|
Received: 17 September 2018
Revised: 01 November 2018
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the Science and Technology Program of Guangdong Province, China (Grant No. 2015B010112002) and the Science and Technology Project of Guangzhou City, China (Grant No. 201607010250). |
Corresponding Authors:
Shu-wen Zheng
E-mail: LED@scnu.edu.cn
|
Cite this article:
Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛) Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study 2019 Chin. Phys. B 28 016301
|
[1] |
Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166
|
[2] |
Chen K Y C, Hsu C, Yu H C, Peng Y M, Yang C C and Su Y K 2018 IEEE Trans. Electron. Devices 65 1817
|
[3] |
Oshima T, Okuno T and Fujita S 2014 Jpn. Appl. Phys. 46 7217
|
[4] |
Gaddy B E, Bryan Z, Bryan I, Xie J, Dalmau R, Moody B, Kumagai Y, Nagashima T, Kubota Y and Kinoshita T 2014 Appl. Phys. Lett. 104 202106
|
[5] |
Ohira S, Suzuki N, Arai N, Tanaka M, Sugawara T, Nakajima K and Shishido T 2008 Thin Solid Films 516 5763
|
[6] |
Zhang F B, Arita M, Wang X, Chen Z W, Saito K, Tanaka T, Nishio M, Motooka T and Guo Q X 2016 Appl. Phys. Lett. 109 102105
|
[7] |
Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H and Vanhellemont J 2009 Physica B 404 4854
|
[8] |
Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P and Jessen G H 2017 Appl. Phys. Lett. 111 012103
|
[9] |
Baldini M, Albrecht M, Fiedler A, Irmscher K, Schewski R and Wagner G 2017 ECS J. Solid State Sci. Technol. 6 Q3040
|
[10] |
Varley J B, Weber J R, Janotti A and Van de Walle C G 2010 Appl. Phys. Lett. 97 142106
|
[11] |
Siah S C, Brandt R E, Lim K, Schelhas L T, Jaramillo R, Heinemann M D, Chua D, Wright J, Perkins J D, Segre C U, Gordon R G, Toney M F and Buonassisi T 2015 Appl. Phys. Lett. 107 252103
|
[12] |
Zhang Y J, Yan J L, Zhao G and Xie W F 2010 Physica B 405 3899
|
[13] |
Zheng S W, Fan G H, He M and Zhang T 2014 Chin. Phys. B 23 066301
|
[14] |
Li Y, Yang C H, Wu L Y and Zhang R 2017 Mod. Phys. Lett. B 31 1750172
|
[15] |
Dong L P, Jia R X, Xin B, Peng B and Zhang Y M 2017 Sci. Rep. 7 40160
|
[16] |
Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeisser D, Weber J R, Varley J B and Van de Walle C G 2011 New J. Phys. 13 085014
|
[17] |
Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Zhu Q S and Zhang G Y 2012 Nanoscale Res. Lett. 7 1
|
[18] |
Ovsyannikov S V and Dubrovinsky L S 2011 Int. J. High Press. Res. 31 23
|
[19] |
He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123
|
[20] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[21] |
Pallister P J, Moudrakovski I L, Enright G D and Ripmeester J A 2013 CrystEngComm 15 8808
|
[22] |
Aspera S M, Sakaue M, Wungu T D K, Alaydrus M, Linh T P T, Kasai H, Nakansishi M and Ishihara T 2012 J. Phys.: Condens. Matter 24 405504
|
[23] |
Chen K, Fan G H and Zhang Y 2008 Acta Phys. Sin. 57 1054 (in Chinese)
|
[24] |
Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
|
[25] |
Yoshioka S, Hayashi H, Kuwabara A, Oba F and Matsunaga K 2007 J. Phys.: Condens. Matter 19 1 346211
|
[26] |
Kang B K, Mang S R, Go D H and Yoon D H 2013 Mater. Lett. 111 67
|
[27] |
Villora E G, Shimamura K, Yoshikawa Y, Ujiie T and Aoki K 2008 Appl. Phys. Lett. 92 202120
|
[28] |
Bernd G P, Michel C, Steven G L and Marvin L C 1997 J. Comput. Phys. 131 233
|
[29] |
Giacovazzo C, Monaco H L, Viterbo D, Scordari F, Gilli G, Zanotti G and Catti M 1993 Acta Crystallogr. 49 373
|
[30] |
Yang K, Dai Y and Huang B 2008 Chem. Phys. Lett. 456 71
|
[31] |
Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T, Honda T 2013 Appl. Phys. Lett. 103 041910
|
[32] |
Mohamed M, Janowitz C, Unger I, Manzke R, Galazka Z, Uecker R, Fornari R, Weber J R, Varley J B and Van de Walle C G 2010 Appl. Phys. Lett. 97 081906
|
[33] |
Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Express 6 086502
|
[34] |
Sarkar A, Ghosh S, Chandhuri S and Pal A K 1991 Thin Solid Films 204 255
|
[35] |
Reynolds D C, Look D C and Jogai B 2000 J. Appl. Phys. 88 5760
|
[36] |
Zheng S W, Fan G H, Zhang T, Pi H and Xu K F 2014 Acta Phys. Sin. 63 087101
|
[37] |
Hou Q Y, Li J J, Ying C, Zhao C W, Zhao E J and Zhang Y 2013 Chin. Phys. B 22 077103
|
[38] |
Guo S, Hou Q, Zhao C and Zhang Y 2014 Chem. Phys. Lett. 614 15
|
[39] |
Rafique S, Han L and Zhao H P 2015 Phys. Status Solidi (a) 213 1002
|
[40] |
Zhang F, Saito K, Tanaka T, Nishio, M and Guo Q 2014 Solid State Commun. 186 28
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|