Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016301    DOI: 10.1088/1674-1056/28/1/016301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study

Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛)
Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China
Abstract  

The electronic structures and optical properties of β-Ga2O3 and Si- and Sn-doped β-Ga2O3 are studied using the GGA+U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-Ga2O3 are in good agreement with experimental results. Si- and Sn-doped β-Ga2O3 tend to form under O-poor conditions, and the formation energy of Si-doped β-Ga2O3 is larger than that of Sn-doped β-Ga2O3 because of the large bond length variation between Ga-O and Si-O. Si- and Sn-doped β-Ga2O3 have wider optical gaps than β-Ga2O3, due to the Burstein-Moss effect and the bandgap renormalization effect. Si-doped β-Ga2O3 shows better electron conductivity and a higher optical absorption edge than Sn-doped β-Ga2O3, so Si is more suitable as a dopant of n-type β-Ga2O3, which can be applied in deep-UV photoelectric devices.

Keywords:  density functional theory      GGA+U method      Si-doped β-Ga2O3      Sn-doped β-Ga2O3      electronic structure      optical property  
Received:  17 September 2018      Revised:  01 November 2018      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.20.Pq (Electronic structure calculations)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: 

Project supported by the Science and Technology Program of Guangdong Province, China (Grant No. 2015B010112002) and the Science and Technology Project of Guangzhou City, China (Grant No. 201607010250).

Corresponding Authors:  Shu-wen Zheng     E-mail:  LED@scnu.edu.cn

Cite this article: 

Jun-Ning Dang(党俊宁), Shu-wen Zheng(郑树文), Lang Chen(陈浪), Tao Zheng(郑涛) Electronic structures and optical properties of Si- and Sn-doped β-Ga2O3: A GGA+U study 2019 Chin. Phys. B 28 016301

[1] Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166
[2] Chen K Y C, Hsu C, Yu H C, Peng Y M, Yang C C and Su Y K 2018 IEEE Trans. Electron. Devices 65 1817
[3] Oshima T, Okuno T and Fujita S 2014 Jpn. Appl. Phys. 46 7217
[4] Gaddy B E, Bryan Z, Bryan I, Xie J, Dalmau R, Moody B, Kumagai Y, Nagashima T, Kubota Y and Kinoshita T 2014 Appl. Phys. Lett. 104 202106
[5] Ohira S, Suzuki N, Arai N, Tanaka M, Sugawara T, Nakajima K and Shishido T 2008 Thin Solid Films 516 5763
[6] Zhang F B, Arita M, Wang X, Chen Z W, Saito K, Tanaka T, Nishio M, Motooka T and Guo Q X 2016 Appl. Phys. Lett. 109 102105
[7] Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H and Vanhellemont J 2009 Physica B 404 4854
[8] Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P and Jessen G H 2017 Appl. Phys. Lett. 111 012103
[9] Baldini M, Albrecht M, Fiedler A, Irmscher K, Schewski R and Wagner G 2017 ECS J. Solid State Sci. Technol. 6 Q3040
[10] Varley J B, Weber J R, Janotti A and Van de Walle C G 2010 Appl. Phys. Lett. 97 142106
[11] Siah S C, Brandt R E, Lim K, Schelhas L T, Jaramillo R, Heinemann M D, Chua D, Wright J, Perkins J D, Segre C U, Gordon R G, Toney M F and Buonassisi T 2015 Appl. Phys. Lett. 107 252103
[12] Zhang Y J, Yan J L, Zhao G and Xie W F 2010 Physica B 405 3899
[13] Zheng S W, Fan G H, He M and Zhang T 2014 Chin. Phys. B 23 066301
[14] Li Y, Yang C H, Wu L Y and Zhang R 2017 Mod. Phys. Lett. B 31 1750172
[15] Dong L P, Jia R X, Xin B, Peng B and Zhang Y M 2017 Sci. Rep. 7 40160
[16] Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeisser D, Weber J R, Varley J B and Van de Walle C G 2011 New J. Phys. 13 085014
[17] Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Zhu Q S and Zhang G Y 2012 Nanoscale Res. Lett. 7 1
[18] Ovsyannikov S V and Dubrovinsky L S 2011 Int. J. High Press. Res. 31 23
[19] He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123
[20] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[21] Pallister P J, Moudrakovski I L, Enright G D and Ripmeester J A 2013 CrystEngComm 15 8808
[22] Aspera S M, Sakaue M, Wungu T D K, Alaydrus M, Linh T P T, Kasai H, Nakansishi M and Ishihara T 2012 J. Phys.: Condens. Matter 24 405504
[23] Chen K, Fan G H and Zhang Y 2008 Acta Phys. Sin. 57 1054 (in Chinese)
[24] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[25] Yoshioka S, Hayashi H, Kuwabara A, Oba F and Matsunaga K 2007 J. Phys.: Condens. Matter 19 1 346211
[26] Kang B K, Mang S R, Go D H and Yoon D H 2013 Mater. Lett. 111 67
[27] Villora E G, Shimamura K, Yoshikawa Y, Ujiie T and Aoki K 2008 Appl. Phys. Lett. 92 202120
[28] Bernd G P, Michel C, Steven G L and Marvin L C 1997 J. Comput. Phys. 131 233
[29] Giacovazzo C, Monaco H L, Viterbo D, Scordari F, Gilli G, Zanotti G and Catti M 1993 Acta Crystallogr. 49 373
[30] Yang K, Dai Y and Huang B 2008 Chem. Phys. Lett. 456 71
[31] Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T, Honda T 2013 Appl. Phys. Lett. 103 041910
[32] Mohamed M, Janowitz C, Unger I, Manzke R, Galazka Z, Uecker R, Fornari R, Weber J R, Varley J B and Van de Walle C G 2010 Appl. Phys. Lett. 97 081906
[33] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Express 6 086502
[34] Sarkar A, Ghosh S, Chandhuri S and Pal A K 1991 Thin Solid Films 204 255
[35] Reynolds D C, Look D C and Jogai B 2000 J. Appl. Phys. 88 5760
[36] Zheng S W, Fan G H, Zhang T, Pi H and Xu K F 2014 Acta Phys. Sin. 63 087101
[37] Hou Q Y, Li J J, Ying C, Zhao C W, Zhao E J and Zhang Y 2013 Chin. Phys. B 22 077103
[38] Guo S, Hou Q, Zhao C and Zhang Y 2014 Chem. Phys. Lett. 614 15
[39] Rafique S, Han L and Zhao H P 2015 Phys. Status Solidi (a) 213 1002
[40] Zhang F, Saito K, Tanaka T, Nishio, M and Guo Q 2014 Solid State Commun. 186 28
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
No Suggested Reading articles found!