Special Issue:
SPECIAL TOPIC — Photodetector: Materials, physics, and applications
|
SPECIAL TOPIC—Photodetector: Materials, physics, and applications |
Prev
Next
|
|
|
High performance lateral Schottky diodes based on quasi-degenerated Ga2O3 |
Yang Xu(徐阳)1, Xuanhu Chen(陈选虎)1, Liang Cheng(程亮)1, Fang-Fang Ren(任芳芳)1,2,3, Jianjun Zhou(周建军)4, Song Bai(柏松)4, Hai Lu(陆海)1, Shulin Gu(顾书林)1,2, Rong Zhang(张荣)1,2, Youdou Zheng(郑有炓)1,2, Jiandong Ye(叶建东)1,2,3 |
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;
3 Research Institute of Shenzhen, Nanjing University, Shenzhen 518057, China;
4 State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices, The 55th Research Institute of China Electronics Technology Group Corporation, Nanjing 210016, China |
|
|
Abstract Ni/β-Ga2O3 lateral Schottky barrier diodes (SBDs) were fabricated on a Sn-doped quasi-degenerate n+-Ga2O3 (201) bulk substrate. The resultant diodes with an area of 7.85×10-5 cm2 exhibited excellent rectifying characteristics with an ideality factor of 1.21, a forward current density (J) of 127.4 A/cm2 at 1.4 V, a specific on-state resistance (Ron, sp) of 1.54 mΩ·cm2, and an ultra-high on/off ratio of 2.1×1011 at ±1 V. Due to a small depletion region in the highly-doped substrate, a breakdown feature was observed at -23 V, which corresponded to a breakdown field of 2.1 MV/cm and a power figure-of-merit (VB2/Ron) of 3.4×105 W/cm2. Forward current–voltage characteristics were described well by the thermionic emission theory while thermionic field emission and trap-assisted tunneling were the dominant transport mechanisms at low and high reverse biases, respectively, which was a result of the contribution of deep-level traps at the metal–semiconductor interface. The presence of interfacial traps also caused the difference in Schottky barrier heights of 1.31 eV and 1.64 eV respectively determined by current–voltage and capacitance–voltage characteristics. With reduced trapping effect and incorporation of drift layers, the β-Ga2O3 SBDs could further provide promising materials for delivering both high current output and high breakdown voltage.
|
Received: 22 December 2018
Revised: 14 January 2019
Accepted manuscript online:
|
PACS:
|
85.30.Hi
|
(Surface barrier, boundary, and point contact devices)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61322403, and 91850112), the State Key R&D Project of Jiangsu, China (Grant No. BE2018115), Shenzhen Fundamental Research Project, China (Grant Nos. 201773239 and 201888588), State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices, China (Grant No. 2017KF001), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 021014380093 and 021014380085). |
Corresponding Authors:
Jiandong Ye
E-mail: yejd@nju.edu.cn
|
Cite this article:
Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东) High performance lateral Schottky diodes based on quasi-degenerated Ga2O3 2019 Chin. Phys. B 28 038503
|
[1] |
Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G 2018 RSC Adv. 8 6341
|
[2] |
Jang S, Jung S, Kim J, Ren F, Pearton S J and Baik K H 2018 ECS J. Solid State Sc 7 Q3180
|
[3] |
Oshima T, Hashiguchi A, Moribayashi T, Koshi K, Sasaki K, Kuramata A, Ueda O, Oishi T and Kasu M 2017 Jpn. J. Appl. Phys. 56 086501
|
[4] |
Oh S, Yang G and Kim J 2017 ECS J. Solid State Sc 6 Q3022
|
[5] |
Oishi T, Koga Y, Harada K and Kasu M 2015 Appl. Phys. Express 8 031101
|
[6] |
Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y and Monemar B 2016 Appl. Phys. Lett. 108 133503
|
[7] |
Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105
|
[8] |
Hu Z, Zhou H, Feng Q, Zhang J, Zhang C, Dang K, Cai Y, Feng Z, Gao Y and Kang X 2018 IEEE Electron Device Lett. 39 1564
|
[9] |
Yang J C, Ahn S, Ren F, Pearton S J, Jang S, Kim J and Kuramata A 2017 Appl. Phys. Lett. 110 192101
|
[10] |
Farzana E, Zhang Z, Paul P K, Arehart A R and Ringel S A 2017 Appl. Phys. Lett. 110 202102
|
[11] |
Ahn S, Ren F, Yuan L, Pearton S and Kuramata A 2017 ECS J. Solid State Sc 6 P68
|
[12] |
Oshima T, Okuno T, Arai N, Suzuki N, Hino H and Fujita S 2009 Jpn. J. Appl. Phys. 48 011605
|
[13] |
Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S 2009 Appl. Phys. Lett. 94 222102
|
[14] |
Pratiyush A S, Xia Z, Kumar S, Zhang Y, Joishi C, Muralidharan R, Rajan S and Nath D N 2018 IEEE Photon. Technol. Lett. 30 2025
|
[15] |
Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506
|
[16] |
Li W, Hu Z, Nomoto K, Zhang Z, Hsu J Y, Thieu Q T, Sasaki K, Kuramata A, Jena D and Xing H G 2018 Appl. Phys. Lett. 113 202101
|
[17] |
Yang J, Ahn S, Ren F, Pearton S, Jang S and Kuramata A 2017 IEEE Electron Device Lett. 38 906
|
[18] |
Yang J C, Ren F, Tadjer M, Pearton S J and Kuramata A 2018 AIP Adv. 8 055026
|
[19] |
Joishi C, Rafique S, Xia Z, Han L, Krishnamoorthy S, Zhang Y, Lodha S, Zhao H and Rajan S 2018 Appl. Phys. Express 11 031101
|
[20] |
Sasaki K, Wakimoto D, Thieu Q T, Koishikawa Y, Kuramata A, Higashiwaki M and Yamakoshi S 2017 IEEE Electron Device Lett. 38 783
|
[21] |
Kasu M, Oshima T, Hanada K, Moribayashi T, Hashiguchi A, Oishi T, Koshi K, Sasaki K, Kuramata A and Ueda O 2017 Jpn. J. Appl. Phys. 56 091101
|
[22] |
Kasu M, Hanada K, Moribayashi T, Hashiguchi A, Oshima T, Oishi T, Koshi K, Sasaki K, Kuramata A and Ueda O 2016 Jpn. J. Appl. Phys. 55 1202BB
|
[23] |
Oishi T, Harada K, Koga Y and Kasu M 2016 Jpn. J. Appl. Phys. 55 030305
|
[24] |
He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X and Liu M 2017 Appl. Phys. Lett. 110 093503
|
[25] |
Rathkanthiwar S, Kalra A, Solanke S V, Mohta N, Muralidharan R, Raghavan S and Nath D N 2017 J. Appl. Phys. 121 164502
|
[26] |
Hudait M and Krupanidhi S 2001 Phys. B: Condens. Matter 307 125
|
[27] |
Chiu F C 2014 Adv. Mater. Sci. Eng. 7 1
|
[28] |
Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
|
[29] |
Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703
|
[30] |
Sun X, Li D, Jiang H, Li Z, Song H, Chen Y and Miao G 2011 Appl. Phys. Lett. 98 121117
|
[31] |
Sang L W, Ren B, Sumiya M, Liao M Y, Koide Y, Tanaka A, Cho Y J, Harada Y, Nabatame T, Sekiguchi T, Usami S, Honda Y and Amano H 2017 Appl. Phys. Lett. 111 122102
|
[32] |
Sang L, Liao M, Koide Y and Sumiya M 2011 Appl. Phys. Lett. 98 103502
|
[33] |
Freeouf J L, Jackson T N, Laux S E and Woodall J M 1982 J. Vac. Sci. Technol. 21 570
|
[34] |
Ohdomari I and Tu K N 1980 J. Appl. Phys. 51 3735
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|