Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 026801    DOI: 10.1088/1674-1056/28/2/026801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces

San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和)
School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing(USTB), Beijing 100083, China
Abstract  Polycrystalline gallium nitride (GaN) thin films were deposited on Si (100) substrates via plasma-enhanced atomic layer deposition (PEALD) under optimal deposition parameters. In this work, we focus on the research of the GaN/Si (100) interfacial properties. The x-ray reflectivity measurements show the clearly-resolved fringes for all the as-grown GaN films, which reveals a perfectly smooth interface between the GaN film and Si (100), and this feature of sharp interface is further confirmed by high resolution transmission electron microscopy (HRTEM). However, an amorphous interfacial layer (~2 nm) can be observed from the HRTEM images, and is determined to be mixture of GaxOy and GaN by x-ray photoelectron spectroscopy. To investigate the effect of this interlayer on the GaN growth, an AlN buffer layer was employed for GaN deposition. No interlayer is observed between GaN and AlN, and GaN shows better crystallization and lower oxygen impurity during the initial growth stage than the GaN with an interlayer.
Keywords:  gallium nitride      PEALD      sharp interface      x-ray reflectivity      high resolution transmission electron microscopy  
Received:  03 November 2017      Revised:  29 November 2018      Accepted manuscript online: 
PACS:  68.35.bg (Semiconductors)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  68.55.Nq (Composition and phase identification)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-BR-16-018A, FRF-TP-17-022A1, and FRF-TP-17-069A1), the National Natural Science Foundation of China (Grant Nos. 61274134 and 51402064), USTB Start-up Program (Grant No. 06105033), China Postdoctoral Science Foundation (Grant No. 2018M631333), Beijing Natural Science Foundation (Grant Nos. 2184112 and 4173077), Beijing Innovation and Research Base Fund (Grant No. Z161100005016095), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2015387).
Corresponding Authors:  Ming-Zeng Peng, Xin-He Zheng     E-mail:  mzpeng@ustb.edu.cn;xinhezheng@ustb.edu.cn

Cite this article: 

San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和) PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces 2019 Chin. Phys. B 28 026801

[1] Walker D, Monroy E, Kung P, Wu J, Hamilton M, Sanchez F J, Diaz J and Razeghi M 1999 Appl. Phys. Lett. 74 762
[2] Mishra U K, Parikh P and Wu Y F 2002 IEEE Proc. 90 1022
[3] Nakamura S, Senoh M and Mukai T 1993 Jpn. J. Appl. Phys. 32 L8
[4] Nakamura S, Mukai T and Senoh M 1991 Jpn. J. Appl. Phys. 30 L1998
[5] Ikeda N, Niiyama Y, Kambayashi H, Sato Y, Nomura T, Kato S and Yoshida S 2010 IEEE Proc. 98 1151
[6] Nakamura S and Krames M R 2013 IEEE Proc. 101 2211
[7] Hove M V, Boulay S, Bahl S R, Stoffels S, Kang X, Wellekens D, Geens K, Delabie A and Decoutere S 2012 IEEE Electron Dev. Lett. 33 667
[8] Nakamura S, Harada Y and Seno M 1991 Appl. Phys. Lett. 58 2021
[9] Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353
[10] Lin M E, Sverdlov B, Zhou G L and Morkoç H 1993 Appl. Phys. Lett. 62 3479
[11] Shih H Y, Lin M C, Chen L Y and Chen M J 2015 Nanotechnology 26 014002
[12] Puurunen R L 2005 J. Appl. Phys. 97 121301
[13] Profijt H B, Potts S E, Van d S, M C M and Kessels W M M 2011 J. Vac. Sci. Technol. A 29 050801
[14] Leskelä M and Ritala M 2002 Thin Solid Films 409 138
[15] George S M 2010 Chem. Rev. 110 111
[16] Tekcan B, Biyikli N and Okyay A K 2014 Opt. Eng. 53 107106
[17] Ozgitakgun C, Goldenberg E, Okyay A and Biyikli N 2014 J. Mater. Chem. C 2 2123
[18] Ozgit C, Donmez I, Alevli M and Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124
[19] Kizir S, Haider A and Biyikli N 2016 J. Vac. Sci. Technol. A 34 041511
[20] Bolat S, Ozgit-Akgun C, Tekcan B and Biyikli N 2014 Appl. Phys. Lett. 104 243505
[21] Alevli M, Haider A, Kizir S, Leghari S A and Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A137
[22] Alevli M, Gungor N, Haider A, Kizir S, Leghari S A and Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A125
[23] Motamedi P and Cadien K 2015 Rsc Adv. 5 57865
[24] Motamedi P, Dalili N and Cadien K C 2015 J. Mater. Chem. C 3 7428
[25] Zhu D, Wallis D and Humphreys C 2013 Rep. Prog. Phys. 76 106501
[26] Liu S, Peng M, Hou C, He Y, Li M and Zheng X 2017 Nanoscale Res. Lett. 12 279
[27] Miikkulainen V, Leskelä M, Ritala M and Puurunen R L 2013 J. Appl. Phys. 44 021301
[28] Eddy C R Jr, Nepal N, Hite J K and Mastro M A 2013 J. Vac. Sci. Technol. A 31 058501
[29] Kushvaha S, Kumar M S, Shukla A, Yadav B, Singh D K, Jewariya M, Ragam S and Maurya K 2015 Rsc Adv. 5 87818
[30] Surdu-Bob C, Saied S and Sullivan J 2001 Appl. Surf. Sci. 183 126
[31] Gungor N and Alevli M 2018 J. Vac. Sci. Technol. A 36 021514
[1] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[2] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[3] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[4] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[5] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[6] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[7] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[8] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[9] Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures
Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞). Chin. Phys. B, 2019, 28(5): 058501.
[10] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[11] Improved carrier injection and confinement in InGaN light-emitting diodes containing GaN/AlGaN/GaN triangular barriers
Li-Wen Cheng(程立文), Jian Ma(马剑), Chang-Rui Cao(曹常锐), Zuo-Zheng Xu(徐作政), Tian Lan(兰天), Jin-Peng Yang(杨金彭), Hai-Tao Chen(陈海涛), Hong-Yan Yu(于洪岩), Shu-Dong Wu(吴曙东), Shun Yao(尧舜), Xiang-Hua Zeng(曾祥华), Zai-Quan Xu(徐仔全). Chin. Phys. B, 2018, 27(8): 088504.
[12] GaN substrate and GaN homo-epitaxy for LEDs: Progress and challenges
Wu Jie-Jun (吴洁君), Wang Kun (王昆), Yu Tong-Jun (于彤军), Zhang Guo-Yi (张国义). Chin. Phys. B, 2015, 24(6): 068106.
[13] Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst
Zhao Yun (赵云), Wang Gang (王钢), Yang Huai-Chao (杨怀超), An Tie-Lei (安铁雷), Chen Min-Jiang (陈闽江), Yu Fang (余芳), Tao Li (陶立), Yang Jian-Kun (羊建坤), Wei Tong-Bo (魏同波), Duan Rui-Fei (段瑞飞), Sun Lian-Feng (孙连峰). Chin. Phys. B, 2014, 23(9): 096802.
[14] Effect of annealing on performance of PEDOT:PSS/n-GaN Schottky solar cells
Feng Qian (冯倩), Du Kai (杜锴), Li Yu-Kun (李宇坤), Shi Peng (时鹏), Feng Qing (冯庆). Chin. Phys. B, 2014, 23(7): 077303.
[15] Hybrid solar cell based on polythiophene and GaN nanoparticles composite
Feng Qian (冯倩), Shi Peng (时鹏), Li Yu-Kun (李宇坤), Du Kai (杜锴), Wang Qiang (王强), Feng Qing (冯庆), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(2): 028802.
No Suggested Reading articles found!