Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 089101    DOI: 10.1088/1674-1056/26/8/089101
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Elastic properties of CaCO3 high pressure phases from first principles

Dan Huang(黄丹)1, Hong Liu(刘红)1,2, Ming-Qiang Hou(侯明强)3, Meng-Yu Xie(谢梦雨)4, Ya-Fei Lu(鹿亚飞)1, Lei Liu(刘雷)1, Li Yi(易丽)1, Yue-Ju Cui(崔月菊)1, Ying Li(李营)1,2, Li-Wei Deng(邓力维)4, Jian-Guo Du(杜建国)1
1 CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science), China Earthquake Administration (CEA), Beijing 100036, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
3 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China;
4 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  

Elastic properties of three high pressure polymorphs of CaCO3 are investigated based on first principles calculations. The calculations are conducted at 0 GPa-40 GPa for aragonite, 40 GPa-65 GPa for post-aragonite, and 65 GPa-150 GPa for the P21/c-h-CaCO3 structure, respectively. By fitting the third-order Birch-Murnaghan equation of state (EOS), the values of bulk modulus K0 and pressure derivative K0' are 66.09 GPa and 4.64 for aragonite, 81.93 GPa and 4.49 for post-aragonite, and 56.55 GPa and 5.40 for P21/c-h-CaCO3, respectively, which are in good agreement with previous experimental and theoretical data. Elastic constants, wave velocities, and wave velocity anisotropies of the three high-pressure CaCO3 phases are obtained. Post-aragonite exhibits 25.90%-32.10% VP anisotropy and 74.34%-104.30% VS splitting anisotropy, and P21/c-h-CaCO3 shows 22.30%-25.40% VP anisotropy and 42.81%-48.00% VS splitting anisotropy in the calculated pressure range. Compared with major minerals of the lower mantle, CaCO3 high pressure polymorphs have low isotropic wave velocity and high wave velocity anisotropies. These results are important for understanding the deep carbon cycle and seismic wave velocity structure in the lower mantle.

Keywords:  CaCO3      elastic properties      wave velocity anisotropy      first principles  
Received:  03 January 2017      Revised:  28 April 2017      Accepted manuscript online: 
PACS:  91.60.Ba (Elasticity, fracture, and flow)  
  62.50.-p (High-pressure effects in solids and liquids)  
  87.19.rd (Elastic properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 41174071, 41373060, 41374096, and 41403099) and the Seismic Fund of Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant Nos. 2012IES0408, 2014IES0407, and 2016IES0101).

Corresponding Authors:  Hong Liu     E-mail:  liuhong_2006@hotmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Dan Huang(黄丹), Hong Liu(刘红), Ming-Qiang Hou(侯明强), Meng-Yu Xie(谢梦雨), Ya-Fei Lu(鹿亚飞), Lei Liu(刘雷), Li Yi(易丽), Yue-Ju Cui(崔月菊), Ying Li(李营), Li-Wei Deng(邓力维), Jian-Guo Du(杜建国) Elastic properties of CaCO3 high pressure phases from first principles 2017 Chin. Phys. B 26 089101

[1] Becker H and Altherr R 1992 Nature 358 745
[2] Keppler H, Wiedenbeck M and Shcheka S S 2003 Nature 424 414
[3] Kerrick D M and Connolly J A 2001 Nature 411 293
[4] Brenker F E, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W and Kaminsky F 2007 Earth Planet. Sci. Lett. 260 1
[5] Kaminsky F, Wirth R, Matsyuk S, Schreiber A and Thomas R 2009 Mineral. Mag. 73 797
[6] Dasgupta R and Hirschmann M M 2010 Earth Planet. Sci. Lett. 298 1
[7] Salje E and Viswanathan K 1976 Contrib. Mineral. Petrol. 55 55
[8] Wolf G, Königsberger E, Schmidt H, Königsberger L C and Gamsjäger H 2000 J. Therm. Anal. Calorim. 60 463
[9] Ivanov B A and Deutsch A 2002 Phys. Earth Planet. In. 129 131
[10] Catalli K and Williams Q 2005 Am. Mineral. 90 1679
[11] Jamieson J C 1953 J. Chem. Phys. 21 1385
[12] Boettcher A and Wyllie P 1968 J. Geol. 76 314
[13] Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O and Kikegawa T 2001 Am. Mineral. 86 997
[14] Ono S, Kikegawa T, Ohishi Y and Tsuchiya J 2005 Am. Mineral. 90 667
[15] Oganov A R, Glass C W and Ono S 2006 Earth Planet. Sci. Lett. 241 95
[16] Ono S, Kikegawa T and Ohishi Y 2007 Am. Mineral. 92 1246
[17] Pickard C J and Needs R J 2014 Phys. Rev. B 91 104101
[18] Liu B, Wang X J and Bu X Y 2016 Acta Phys. Sin. 65 126102 (in Chinese)
[19] Yu Y, Liu D J, Wu R X 2016 Acta Phys. Sin. 65 027101 (in Chinese)
[20] Lu Q, Zhang H Y, Cheng Y, Cheng X Y and Ji G F 2016 Chin. Phys. B 25 348
[21] Wang J F, Fu X N, Zhang X D, Wang J T, Li X D and Jiang Z Y 2016 Chin. Phys. B 25 086302
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Nielsen O H and Martin R M. 1983 Phys. Rev. Lett. 50 697
[26] Mariani M, Sharp N D and Walmsley S H 1996 Chem. Phys. 204 1
[27] Watt J P 1979 J. Appl. Phys. 50 6290
[28] Dickens B and Bowen J 1971 J. Res. Natl. Bur. Stand. A Phys. Chem. 75 27
[29] Li Y, Zou Y, Chen T, Wang X, Qi X, Chen H, Du J and Li B 2015 Am. Mineral. 100 2323
[30] Fisler D K, Gale J D and Cygan R T 2000 Am. Mineral. 85 217
[31] Martens R, Rosenhauer M and Gehlen K 1982 High-Pressure Researches in Geoscience (Stuttgart: Schreyer W Education) pp. 215-222
[32] Martinez I, Zhang J and Reeder R J 1996 Am. Mineral. 81 611
[33] Liu L G, Chen C C, Lin C C and Yang Y J 2005 Phys. Chem. Miner. 32 97
[34] Musgrave M J 1970 J. Crystal Acoustics (Boca Raton: Holden-Day) p. 288
[35] Ono S, Ito E and Katsura T 2001 Earth Planet. Sci. Lett. 190 57
[36] Hirose K, Takafuji N, Sata N and Ohishi Y 2005 Earth Planet. Sci. Lett. 237 239
[37] Akaogi M, Hamada Y, Suzuki T, Kobayashi M and Okada M 1999 Phys. Earth Planet. In. 115 67
[38] Maruyama S, Santosh M and Zhao D 2007 Gondwana Res. 11 7
[39] Yang J, Mao Z, Lin J F and Prakapenka V B 2014 Earth Planet. Sci. Lett. 392 292
[40] Sanchez-Valle C, Ghosh S and Rosa A D 2011 Geophys. Res. Lett. 38 422
[41] Wenk H R, Speziale S, McNamara A and Garnero E 2006 Earth Planet. Sci. Lett. 245 302
[42] Marquardt H and Garnero E J 2009 Science 324 224
[43] Liu Z J, Duan S Q, Yan J, Sun X W, Zhang C R and Chu Y D 2010 Solid State Commun. 150 943
[44] Wu Y, Yang J, Wu X, Song M, Yoshino T, Zhai S, Qin S, Huang H and Lin J F 2016 J. Geophy. Res. Solid Earth 121 5696
[45] Murakami M, Sinogeikin S V, Hellwig H, Bass J D and Li J 2007 Earth Planet. Sci. Lett. 256 47
[46] Tsuchiya T 2011 Phys. Earth Planet. In. 188 142
[47] Taku T, Jun T, Koichiro U and Wentzcovitch R M 2004 Geophys. Res. Lett. 31 189
[48] Dai L, Kudo Y, Hirose K, Murakami M, Asahara Y, Ozawa H, Ohishi Y and Hirao N 2013 Phys. Chem. Miner. 40 195
[49] Dziewonski A M and Anderson D L 1981 Phys. Earth Planet. In. 25 297
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[12] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[13] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[14] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[15] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
No Suggested Reading articles found!