GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Prev
Next
|
|
|
Elastic properties of CaCO3 high pressure phases from first principles |
Dan Huang(黄丹)1, Hong Liu(刘红)1,2, Ming-Qiang Hou(侯明强)3, Meng-Yu Xie(谢梦雨)4, Ya-Fei Lu(鹿亚飞)1, Lei Liu(刘雷)1, Li Yi(易丽)1, Yue-Ju Cui(崔月菊)1, Ying Li(李营)1,2, Li-Wei Deng(邓力维)4, Jian-Guo Du(杜建国)1 |
1 CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science), China Earthquake Administration (CEA), Beijing 100036, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
3 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China;
4 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract Elastic properties of three high pressure polymorphs of CaCO3 are investigated based on first principles calculations. The calculations are conducted at 0 GPa-40 GPa for aragonite, 40 GPa-65 GPa for post-aragonite, and 65 GPa-150 GPa for the P21/c-h-CaCO3 structure, respectively. By fitting the third-order Birch-Murnaghan equation of state (EOS), the values of bulk modulus K0 and pressure derivative K0' are 66.09 GPa and 4.64 for aragonite, 81.93 GPa and 4.49 for post-aragonite, and 56.55 GPa and 5.40 for P21/c-h-CaCO3, respectively, which are in good agreement with previous experimental and theoretical data. Elastic constants, wave velocities, and wave velocity anisotropies of the three high-pressure CaCO3 phases are obtained. Post-aragonite exhibits 25.90%-32.10% VP anisotropy and 74.34%-104.30% VS splitting anisotropy, and P21/c-h-CaCO3 shows 22.30%-25.40% VP anisotropy and 42.81%-48.00% VS splitting anisotropy in the calculated pressure range. Compared with major minerals of the lower mantle, CaCO3 high pressure polymorphs have low isotropic wave velocity and high wave velocity anisotropies. These results are important for understanding the deep carbon cycle and seismic wave velocity structure in the lower mantle.
|
Received: 03 January 2017
Revised: 28 April 2017
Accepted manuscript online:
|
PACS:
|
91.60.Ba
|
(Elasticity, fracture, and flow)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
87.19.rd
|
(Elastic properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41174071, 41373060, 41374096, and 41403099) and the Seismic Fund of Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant Nos. 2012IES0408, 2014IES0407, and 2016IES0101). |
Corresponding Authors:
Hong Liu
E-mail: liuhong_2006@hotmail.com
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Dan Huang(黄丹), Hong Liu(刘红), Ming-Qiang Hou(侯明强), Meng-Yu Xie(谢梦雨), Ya-Fei Lu(鹿亚飞), Lei Liu(刘雷), Li Yi(易丽), Yue-Ju Cui(崔月菊), Ying Li(李营), Li-Wei Deng(邓力维), Jian-Guo Du(杜建国) Elastic properties of CaCO3 high pressure phases from first principles 2017 Chin. Phys. B 26 089101
|
[1] |
Becker H and Altherr R 1992 Nature 358 745
|
[2] |
Keppler H, Wiedenbeck M and Shcheka S S 2003 Nature 424 414
|
[3] |
Kerrick D M and Connolly J A 2001 Nature 411 293
|
[4] |
Brenker F E, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W and Kaminsky F 2007 Earth Planet. Sci. Lett. 260 1
|
[5] |
Kaminsky F, Wirth R, Matsyuk S, Schreiber A and Thomas R 2009 Mineral. Mag. 73 797
|
[6] |
Dasgupta R and Hirschmann M M 2010 Earth Planet. Sci. Lett. 298 1
|
[7] |
Salje E and Viswanathan K 1976 Contrib. Mineral. Petrol. 55 55
|
[8] |
Wolf G, Königsberger E, Schmidt H, Königsberger L C and Gamsjäger H 2000 J. Therm. Anal. Calorim. 60 463
|
[9] |
Ivanov B A and Deutsch A 2002 Phys. Earth Planet. In. 129 131
|
[10] |
Catalli K and Williams Q 2005 Am. Mineral. 90 1679
|
[11] |
Jamieson J C 1953 J. Chem. Phys. 21 1385
|
[12] |
Boettcher A and Wyllie P 1968 J. Geol. 76 314
|
[13] |
Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O and Kikegawa T 2001 Am. Mineral. 86 997
|
[14] |
Ono S, Kikegawa T, Ohishi Y and Tsuchiya J 2005 Am. Mineral. 90 667
|
[15] |
Oganov A R, Glass C W and Ono S 2006 Earth Planet. Sci. Lett. 241 95
|
[16] |
Ono S, Kikegawa T and Ohishi Y 2007 Am. Mineral. 92 1246
|
[17] |
Pickard C J and Needs R J 2014 Phys. Rev. B 91 104101
|
[18] |
Liu B, Wang X J and Bu X Y 2016 Acta Phys. Sin. 65 126102 (in Chinese)
|
[19] |
Yu Y, Liu D J, Wu R X 2016 Acta Phys. Sin. 65 027101 (in Chinese)
|
[20] |
Lu Q, Zhang H Y, Cheng Y, Cheng X Y and Ji G F 2016 Chin. Phys. B 25 348
|
[21] |
Wang J F, Fu X N, Zhang X D, Wang J T, Li X D and Jiang Z Y 2016 Chin. Phys. B 25 086302
|
[22] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[23] |
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
|
[24] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[25] |
Nielsen O H and Martin R M. 1983 Phys. Rev. Lett. 50 697
|
[26] |
Mariani M, Sharp N D and Walmsley S H 1996 Chem. Phys. 204 1
|
[27] |
Watt J P 1979 J. Appl. Phys. 50 6290
|
[28] |
Dickens B and Bowen J 1971 J. Res. Natl. Bur. Stand. A Phys. Chem. 75 27
|
[29] |
Li Y, Zou Y, Chen T, Wang X, Qi X, Chen H, Du J and Li B 2015 Am. Mineral. 100 2323
|
[30] |
Fisler D K, Gale J D and Cygan R T 2000 Am. Mineral. 85 217
|
[31] |
Martens R, Rosenhauer M and Gehlen K 1982 High-Pressure Researches in Geoscience (Stuttgart: Schreyer W Education) pp. 215-222
|
[32] |
Martinez I, Zhang J and Reeder R J 1996 Am. Mineral. 81 611
|
[33] |
Liu L G, Chen C C, Lin C C and Yang Y J 2005 Phys. Chem. Miner. 32 97
|
[34] |
Musgrave M J 1970 J. Crystal Acoustics (Boca Raton: Holden-Day) p. 288
|
[35] |
Ono S, Ito E and Katsura T 2001 Earth Planet. Sci. Lett. 190 57
|
[36] |
Hirose K, Takafuji N, Sata N and Ohishi Y 2005 Earth Planet. Sci. Lett. 237 239
|
[37] |
Akaogi M, Hamada Y, Suzuki T, Kobayashi M and Okada M 1999 Phys. Earth Planet. In. 115 67
|
[38] |
Maruyama S, Santosh M and Zhao D 2007 Gondwana Res. 11 7
|
[39] |
Yang J, Mao Z, Lin J F and Prakapenka V B 2014 Earth Planet. Sci. Lett. 392 292
|
[40] |
Sanchez-Valle C, Ghosh S and Rosa A D 2011 Geophys. Res. Lett. 38 422
|
[41] |
Wenk H R, Speziale S, McNamara A and Garnero E 2006 Earth Planet. Sci. Lett. 245 302
|
[42] |
Marquardt H and Garnero E J 2009 Science 324 224
|
[43] |
Liu Z J, Duan S Q, Yan J, Sun X W, Zhang C R and Chu Y D 2010 Solid State Commun. 150 943
|
[44] |
Wu Y, Yang J, Wu X, Song M, Yoshino T, Zhai S, Qin S, Huang H and Lin J F 2016 J. Geophy. Res. Solid Earth 121 5696
|
[45] |
Murakami M, Sinogeikin S V, Hellwig H, Bass J D and Li J 2007 Earth Planet. Sci. Lett. 256 47
|
[46] |
Tsuchiya T 2011 Phys. Earth Planet. In. 188 142
|
[47] |
Taku T, Jun T, Koichiro U and Wentzcovitch R M 2004 Geophys. Res. Lett. 31 189
|
[48] |
Dai L, Kudo Y, Hirose K, Murakami M, Asahara Y, Ozawa H, Ohishi Y and Hirao N 2013 Phys. Chem. Miner. 40 195
|
[49] |
Dziewonski A M and Anderson D L 1981 Phys. Earth Planet. In. 25 297
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|