Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 066201    DOI: 10.1088/1674-1056/26/6/066201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stability, elastic anisotropy, and electronic properties of Ca2C3

Quan Zhang(张权)1, Qun Wei(魏群)2, Hai-Yan Yan(闫海燕)3, Xuan-Min Zhu(朱轩民)2, Jun-Qin Zhang(张军琴)1, Xiao-Fei Jia(贾晓菲)4, Rong-Hui Yao(姚荣辉)2
1 School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
3 College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
4 Department of Electronic and Information Engineering, Ankang University, Ankang 725000, China
Abstract  The systematic investigations of the mechanical, elastic, and electronic properties, and stability of the newly synthesized monoclinic C2/m-Ca2C3 are performed, based on the first-principles calculations. Ca2C3 is found to be mechanically and dynamically stable only from 0 GPa to 24 GPa. The elastic anisotropy studies show that Ca2C3 exhibits the elastic anisotropy increasing with the augment of pressure. Furthermore, using the HSE06 hybrid functional, the electronic properties of Ca2C3 under pressure are calculated. The structure can be regarded as a quasi-direct band gap semiconductor, and the pressure-induced direct-indirect band gap transition is studied in detail.
Keywords:  carbides      first-principles calculations      elastic properties      electronic structure  
Received:  04 January 2017      Revised:  03 March 2017      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  62.20.dq (Other elastic constants)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204007 and 61474089), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant Nos. 2016JM1026 and 2016JM1016), and the Natural Science Foundation from Education Committee of Shaanxi Province, China (Grant Nos. 16JK1049 and 16JK1016).
Corresponding Authors:  Qun Wei     E-mail:  weiaqun@163.com

Cite this article: 

Quan Zhang(张权), Qun Wei(魏群), Hai-Yan Yan(闫海燕), Xuan-Min Zhu(朱轩民), Jun-Qin Zhang(张军琴), Xiao-Fei Jia(贾晓菲), Rong-Hui Yao(姚荣辉) Stability, elastic anisotropy, and electronic properties of Ca2C3 2017 Chin. Phys. B 26 066201

[1] Nakashima S and Harima H 1997 Phys. Status Solidi A-Appl. Res. 162 39
[2] Dou S X, Soltanian S, Horvat J, Wang X L, Zhou S H, Ionescu M, Liu H K, Munroe P and Tomsic M 2002 Appl. Phys. Lett. 81 3419
[3] Guo S Q, Yang J M, Tanaka H and Kagawa Y 2008 Compos. Sci. Technol. 68 3033
[4] Lomello F, Bonnefont G, Leconte Y, Herlin-Boime N and Fantozzi G 2012 J. Eur. Ceram. Soc. 32 633
[5] Wang R Z, Li W G, Li D Y and Fang D N 2015 J. Eur. Ceram. Soc. 35 2957
[6] Pan F C, Chen Z P, Lin X L, Zheng F, Wang X M and Chen H M 2016 Chin. Phys. B 25 096108
[7] Zhang Q, Wei Q, Yan H Y, Fan Q Y, Zhu X M, Zhang J Q and Zhang D Y 2016 Z. Naturforsch. A 71 387
[8] Liu Z Y, He J L, Yang J, Guo X J, Sun H, Wang H T, Wu E D and Tian Y J 2006 Phys. Rev. B 73 172101
[9] Liu H Y, Li Q, Zhu L and Ma Y M 2011 Phys. Lett. A 375 771
[10] Solozhenko V L, Kurakevych O O, Andrault D, Le Godec Y and Mezouar M 2009 Phys. Rev. Lett. 102 015506
[11] Li Q, Wang H, Tian Y J, Xia Y, Cui T, He J L, Ma Y M and Zou G T 2010 J. Appl. Phys. 108 023507
[12] Xu L F, Zhao Z S, Wang Q Q, Wang L M, Xu B, He J L and Tian Y J 2011 J. Appl. Phys. 110 013501
[13] Zhang Q, Wei Q, Yan H Y, Zhang Z X, Fan Q Y, Jia X F, Zhang J Q and Zhang D Y 2016 Acta Phys. Pol. A 129 329
[14] Wang D Y, Yan Q, Wang B, Wang Y X, Yang J M and Yang G 2014 J. Chem. Phys. 140 224704
[15] Fan Q Y, Wei Q, Chai C C, Yu X H, Liu Y, Zhou P K, Yan H Y and Zhang D Y 2015 Chin. J. Phys. 53 100601
[16] Efthimiopoulos I, Benson D E, Konar S, Nylén J, Svensson G, Häussermann U, Liebig S, Ruschewitz U, Vazhenin G V, Loa I, Hanfl and Mand Syassen K 2015 Phys. Rev. B 92 064111
[17] Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W and Gogotsi Y 2013 Science 341 1502
[18] Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M W and Gogotsi Y 2013 Nat. Commun. 4 1716
[19] Kurakevych O O, Strobel T A, Kim D Y and Cody G D 2013 Angew. Chem. Engl. 52 8930
[20] Strobel T A, Kurakevych O O, Kim D Y, Godec Y L, Crichton W, Guignard J, Guignot N, Cody G D and Oganov A R 2014 Inorg. Chem. 53 7020
[21] Debessai M, Hamlin J J, Schilling J S, Rosenmann D, Hinks D G and Claus H 2010 Phys. Rev. B 82 132502
[22] Li Y L, Luo W, Chen X J, Zeng Z, Lin H Q and Ahuja R 2013 Sci. Rep. 3 3331
[23] Nylen J, Konar S, Lazor P, Benson D and Haussermann U 2012 J. Chem. Phys. 137 224507
[24] Nourbakhsh Z, Hashemifar S J and Akbarzadeh H 2013 J. Alloys Compd. 579 360
[25] Wei Q, Zhang Q and Zhang M G 2016 Materials 9 570
[26] Li Y L, Wang S N, Oganov A R, Gou H, Smith J S and Strobel T A 2015 Nat. Commun. 6 6974
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[29] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[30] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[31] Vanderbilt D 1990 Phys. Rev. B 41 7892
[32] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[33] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[34] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[35] Xu X Y, Chai C C, Fan Q Y and Yang Y T 2017 Chin. Phys. B 26 046101
[36] Sin'ko G V and Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989
[37] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig, Germany: Teubner)
[38] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[39] Hill R 1952 Phys. Soc. Lond. Sect. A 65 349
[40] Wei Q, Zhang Q, Yan H Y and Zhang M G 2017 J. Mater. Sci. 52 2385
[41] Pugh S F 1954 Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 823
[42] Wei Q, Zhang M G, Yan H Y, Lin Z Z and Zhu X M 2014 Europhys Lett. 107 27007
[43] Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C and Evans K E 2010 Comput. Phys. Commun. 181 2102
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[10] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!