CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation |
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞) |
Faculty of Materials and Energy, Southwest University, Chongqing 400715, China |
|
|
Abstract The hydrostatic-pressure-dependent mechanical stability and optoelectronic behavior of Zn4B6O13 (ZBO) are calculated using the exchange-correlation functional Perdew-Burke-Ernzerhof generalized gradient approximation and the hybrid functional PBE0 based on density functional theory. The calculated and experimental unit cell volumes and Vickers hardness of ZBO at zero pressure agree well. ZBO is mechanically stable under the critical pressure of 52.98 GPa according to the generalized stability criteria. Furthermore, Young's modulus and Vickers hardness decrease with increasing hydrostatic pressure. The strength and type of ZBO bonds are investigated by population and electron density difference. The electronic structure at zero pressure reveals that ZBO is an indirect band gap semiconductor, and the calculated 5.62-eV bandgap coincides well with the 5.73-eV experimental value, highlighting the success of the hybrid functional PBE0 calculations of electronic properties. The band gap almost increases as a second-order polynomial of pressure, and the indirect nature does not change with the applied external pressure. The optical reflectivity and absorption coefficient show that ZBO is an excellent ultraviolet photodetector. Our calculation results suggest that the elastic and optical properties of ZBO are highly stable over a wide pressure range.
|
Received: 08 November 2017
Revised: 18 January 2018
Accepted manuscript online:
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.51171156). |
Corresponding Authors:
Nan-Pu Cheng
E-mail: cheng_np@swu.edu.cn
|
Cite this article:
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞) Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation 2018 Chin. Phys. B 27 057101
|
[10] |
Chen C, Lin Z and Wang Z S 2005 Appl. Phys. B 80 1
|
[1] |
Chen X, Zhao Y, Chang X, Zuo J, Zang H and Xiao W 2006 J. Solid State Chem. 179 3911
|
[11] |
Chen X, Xue H, Chang X, Zhang L, Zhao Y, Zuo J, Zang H and Xiao W 2006 J. Alloys Compd. 425 96
|
[2] |
Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 82 2731
|
[12] |
Murray A F and Lockwood D J 1976 J. Phys. C:Solid State Phys. 9 3691
|
[3] |
Lochab S P, Pandey A, Sahare P D, Chauhan R S, Salah N and Ranjan R 2007 Phys. Status Solid. 204 2416
|
[13] |
Bohatý L, Ochrombel R, Liebertz J and Becker P 2017 Cryst. Res. Technol. 52 1600250
|
[4] |
Yang M, Liu L and Chen F 2012 Mater. Lett. 88 116
|
[14] |
Meijerink A, Blasse G and Glasbeek M 1990 J. Phys.:Condens. Matter 2 6303
|
[5] |
Tulek A, Polson R C and Vardeny Z V 2010 Nat. Phys. 6 303
|
[15] |
Liang P, Wang M Z and Liu Z H 2017 J. Rare Earths 35 441
|
[6] |
Ferrari A C, Bonaccorso F, Fal'Ko V, et al. 2015 Nanoscale 7 4598
|
[16] |
Jiang X X, Molokeev M S, Gong P F, Yang Y, Wang W, Wang S H, Wu S F, Wang Y X, Huang R J, Li L F, Wu Y C, Xing X R and Lin Z S 2016 Adv. Mater. 28 7936
|
[7] |
Wang S, Ye N, Li W and Zhao D 2010 J. Am. Chem. Soc. 132 8779
|
[17] |
Štich I, Payne M C, King-Smith R D, Lin J S and Clarke L 1992 J. Phys. Rev. Lett. 68 1351
|
[8] |
Han S J, Wang Y, Pan S L, Dong X Y, Wu H P, Han J, Yang Y, Yu H W and Bai C Y 2014 Cryst. Growth Des. 14 1794
|
[18] |
Hohenberg P and Kohn W 1964 Phys Rev. 136 B864
|
[9] |
Wang Y and Pan S 2016 Coord. Chem. Rev. 323 15
|
[19] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[10] |
Chen C, Lin Z and Wang Z S 2005 Appl. Phys. B 80 1
|
[20] |
Yelisseyev A, Liang F, Isaenko L, Lobanov S, Goloshumova A and Lin Z S 2017 Opt. Mater. 72 795
|
[21] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[11] |
Chen X, Xue H, Chang X, Zhang L, Zhao Y, Zuo J, Zang H and Xiao W 2006 J. Alloys Compd. 425 96
|
[12] |
Murray A F and Lockwood D J 1976 J. Phys. C:Solid State Phys. 9 3691
|
[22] |
Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
|
[13] |
Bohatý L, Ochrombel R, Liebertz J and Becker P 2017 Cryst. Res. Technol. 52 1600250
|
[23] |
Wang J, Yip S, Phillpot S R and Wolf D 1993 Phys. Rev. Lett. 71 4182
|
[14] |
Meijerink A, Blasse G and Glasbeek M 1990 J. Phys.:Condens. Matter 2 6303
|
[24] |
Wu Z, Zhao E, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B. 76 054115
|
[25] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[15] |
Liang P, Wang M Z and Liu Z H 2017 J. Rare Earths 35 441
|
[16] |
Jiang X X, Molokeev M S, Gong P F, Yang Y, Wang W, Wang S H, Wu S F, Wang Y X, Huang R J, Li L F, Wu Y C, Xing X R and Lin Z S 2016 Adv. Mater. 28 7936
|
[26] |
Winkler B, Guzman A C, Wiehl L, Bayarjargal L and Milman V 2012 Solid State Sci. 14 1080
|
[17] |
Štich I, Payne M C, King-Smith R D, Lin J S and Clarke L 1992 J. Phys. Rev. Lett. 68 1351
|
[27] |
Yoo M H 1981 Metall. Trans. A 12 409
|
[18] |
Hohenberg P and Kohn W 1964 Phys Rev. 136 B864
|
[28] |
Shakil M, Zafar M, Ahmed S, Choudhary M A and Iqbal T 2016 Chin. Phys. B 25 076104
|
[29] |
Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
|
[19] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[30] |
Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
|
[20] |
Yelisseyev A, Liang F, Isaenko L, Lobanov S, Goloshumova A and Lin Z S 2017 Opt. Mater. 72 795
|
[31] |
Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
|
[21] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[22] |
Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
|
[32] |
Vaitheeswaran G, Kanchana V, Svane A and Delin A 2007 J. Phys.:Condens. Matter 19 326214
|
[23] |
Wang J, Yip S, Phillpot S R and Wolf D 1993 Phys. Rev. Lett. 71 4182
|
[33] |
Ma X, Lu B, Li D, Shi R, Pan C and Zhu Y 2011 J. Phys. Chem. C 115 4680
|
[34] |
Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2008 Chin. Phys. Lett. 25 3735
|
[24] |
Wu Z, Zhao E, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B. 76 054115
|
[35] |
Ming X, Wang C Z, Fan H G, Hu F, Wei Y J, Huang Z F, Meng X and Chen G 2008 J. Phys.:Condens. Matter 20 395204
|
[25] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[36] |
Chen D G, Cheng W D, Wu D S, Zhang H, Zhang Y C, Gong Y J and Kan Z G 2005 Solid State Sci. 7 179
|
[26] |
Winkler B, Guzman A C, Wiehl L, Bayarjargal L and Milman V 2012 Solid State Sci. 14 1080
|
[37] |
Alemi A, Mohseni N, Dolatyari M and Bakhtiari A 2012 Int. J. Bio-Inorg. Hybd. Nanomat. 1 79
|
[27] |
Yoo M H 1981 Metall. Trans. A 12 409
|
[28] |
Shakil M, Zafar M, Ahmed S, Choudhary M A and Iqbal T 2016 Chin. Phys. B 25 076104
|
[38] |
Smith N V 1971 Phys. Rev. B 3 1862
|
[39] |
Yun J N and Zhang Z Y 2009 Chin. Phys. B. 18 2945
|
[29] |
Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
|
[40] |
Li Y L, Fan W L, Sun H G, Cheng X F, Li P, Zhao X, Hao J C and Jiang M H 2010 J. Phys. Chem. A 114 1052
|
[30] |
Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
|
[31] |
Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
|
[41] |
Babu K R, Lingam C B, Auluck S, Tewari S P and Vaitheeswaran G 2011 J. Solid State Chem. 184 343
|
[32] |
Vaitheeswaran G, Kanchana V, Svane A and Delin A 2007 J. Phys.:Condens. Matter 19 326214
|
[42] |
Furno M, Meerheim R, Hofmann S, Lüssem B and Leo K 2012 Phys. Rev. B 85 115205
|
[33] |
Ma X, Lu B, Li D, Shi R, Pan C and Zhu Y 2011 J. Phys. Chem. C 115 4680
|
[34] |
Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2008 Chin. Phys. Lett. 25 3735
|
[35] |
Ming X, Wang C Z, Fan H G, Hu F, Wei Y J, Huang Z F, Meng X and Chen G 2008 J. Phys.:Condens. Matter 20 395204
|
[36] |
Chen D G, Cheng W D, Wu D S, Zhang H, Zhang Y C, Gong Y J and Kan Z G 2005 Solid State Sci. 7 179
|
[37] |
Alemi A, Mohseni N, Dolatyari M and Bakhtiari A 2012 Int. J. Bio-Inorg. Hybd. Nanomat. 1 79
|
[38] |
Smith N V 1971 Phys. Rev. B 3 1862
|
[39] |
Yun J N and Zhang Z Y 2009 Chin. Phys. B. 18 2945
|
[40] |
Li Y L, Fan W L, Sun H G, Cheng X F, Li P, Zhao X, Hao J C and Jiang M H 2010 J. Phys. Chem. A 114 1052
|
[41] |
Babu K R, Lingam C B, Auluck S, Tewari S P and Vaitheeswaran G 2011 J. Solid State Chem. 184 343
|
[42] |
Furno M, Meerheim R, Hofmann S, Lüssem B and Leo K 2012 Phys. Rev. B 85 115205
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|