Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 057101    DOI: 10.1088/1674-1056/27/5/057101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation

Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞)
Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
Abstract  The hydrostatic-pressure-dependent mechanical stability and optoelectronic behavior of Zn4B6O13 (ZBO) are calculated using the exchange-correlation functional Perdew-Burke-Ernzerhof generalized gradient approximation and the hybrid functional PBE0 based on density functional theory. The calculated and experimental unit cell volumes and Vickers hardness of ZBO at zero pressure agree well. ZBO is mechanically stable under the critical pressure of 52.98 GPa according to the generalized stability criteria. Furthermore, Young's modulus and Vickers hardness decrease with increasing hydrostatic pressure. The strength and type of ZBO bonds are investigated by population and electron density difference. The electronic structure at zero pressure reveals that ZBO is an indirect band gap semiconductor, and the calculated 5.62-eV bandgap coincides well with the 5.73-eV experimental value, highlighting the success of the hybrid functional PBE0 calculations of electronic properties. The band gap almost increases as a second-order polynomial of pressure, and the indirect nature does not change with the applied external pressure. The optical reflectivity and absorption coefficient show that ZBO is an excellent ultraviolet photodetector. Our calculation results suggest that the elastic and optical properties of ZBO are highly stable over a wide pressure range.
Keywords:  Zn4B6O13 crystal      density functional theory      elastic properties      optical properties  
Received:  08 November 2017      Revised:  18 January 2018      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.-x (Mechanical properties of solids)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.51171156).
Corresponding Authors:  Nan-Pu Cheng     E-mail:  cheng_np@swu.edu.cn

Cite this article: 

Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞) Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation 2018 Chin. Phys. B 27 057101

[10] Chen C, Lin Z and Wang Z S 2005 Appl. Phys. B 80 1
[1] Chen X, Zhao Y, Chang X, Zuo J, Zang H and Xiao W 2006 J. Solid State Chem. 179 3911
[11] Chen X, Xue H, Chang X, Zhang L, Zhao Y, Zuo J, Zang H and Xiao W 2006 J. Alloys Compd. 425 96
[2] Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 82 2731
[12] Murray A F and Lockwood D J 1976 J. Phys. C:Solid State Phys. 9 3691
[3] Lochab S P, Pandey A, Sahare P D, Chauhan R S, Salah N and Ranjan R 2007 Phys. Status Solid. 204 2416
[13] Bohatý L, Ochrombel R, Liebertz J and Becker P 2017 Cryst. Res. Technol. 52 1600250
[4] Yang M, Liu L and Chen F 2012 Mater. Lett. 88 116
[14] Meijerink A, Blasse G and Glasbeek M 1990 J. Phys.:Condens. Matter 2 6303
[5] Tulek A, Polson R C and Vardeny Z V 2010 Nat. Phys. 6 303
[15] Liang P, Wang M Z and Liu Z H 2017 J. Rare Earths 35 441
[6] Ferrari A C, Bonaccorso F, Fal'Ko V, et al. 2015 Nanoscale 7 4598
[16] Jiang X X, Molokeev M S, Gong P F, Yang Y, Wang W, Wang S H, Wu S F, Wang Y X, Huang R J, Li L F, Wu Y C, Xing X R and Lin Z S 2016 Adv. Mater. 28 7936
[7] Wang S, Ye N, Li W and Zhao D 2010 J. Am. Chem. Soc. 132 8779
[17] Štich I, Payne M C, King-Smith R D, Lin J S and Clarke L 1992 J. Phys. Rev. Lett. 68 1351
[8] Han S J, Wang Y, Pan S L, Dong X Y, Wu H P, Han J, Yang Y, Yu H W and Bai C Y 2014 Cryst. Growth Des. 14 1794
[18] Hohenberg P and Kohn W 1964 Phys Rev. 136 B864
[9] Wang Y and Pan S 2016 Coord. Chem. Rev. 323 15
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[10] Chen C, Lin Z and Wang Z S 2005 Appl. Phys. B 80 1
[20] Yelisseyev A, Liang F, Isaenko L, Lobanov S, Goloshumova A and Lin Z S 2017 Opt. Mater. 72 795
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[11] Chen X, Xue H, Chang X, Zhang L, Zhao Y, Zuo J, Zang H and Xiao W 2006 J. Alloys Compd. 425 96
[12] Murray A F and Lockwood D J 1976 J. Phys. C:Solid State Phys. 9 3691
[22] Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
[13] Bohatý L, Ochrombel R, Liebertz J and Becker P 2017 Cryst. Res. Technol. 52 1600250
[23] Wang J, Yip S, Phillpot S R and Wolf D 1993 Phys. Rev. Lett. 71 4182
[14] Meijerink A, Blasse G and Glasbeek M 1990 J. Phys.:Condens. Matter 2 6303
[24] Wu Z, Zhao E, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B. 76 054115
[25] Hill R 1952 Proc. Phys. Soc. A 65 349
[15] Liang P, Wang M Z and Liu Z H 2017 J. Rare Earths 35 441
[16] Jiang X X, Molokeev M S, Gong P F, Yang Y, Wang W, Wang S H, Wu S F, Wang Y X, Huang R J, Li L F, Wu Y C, Xing X R and Lin Z S 2016 Adv. Mater. 28 7936
[26] Winkler B, Guzman A C, Wiehl L, Bayarjargal L and Milman V 2012 Solid State Sci. 14 1080
[17] Štich I, Payne M C, King-Smith R D, Lin J S and Clarke L 1992 J. Phys. Rev. Lett. 68 1351
[27] Yoo M H 1981 Metall. Trans. A 12 409
[18] Hohenberg P and Kohn W 1964 Phys Rev. 136 B864
[28] Shakil M, Zafar M, Ahmed S, Choudhary M A and Iqbal T 2016 Chin. Phys. B 25 076104
[29] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[30] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[20] Yelisseyev A, Liang F, Isaenko L, Lobanov S, Goloshumova A and Lin Z S 2017 Opt. Mater. 72 795
[31] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
[32] Vaitheeswaran G, Kanchana V, Svane A and Delin A 2007 J. Phys.:Condens. Matter 19 326214
[23] Wang J, Yip S, Phillpot S R and Wolf D 1993 Phys. Rev. Lett. 71 4182
[33] Ma X, Lu B, Li D, Shi R, Pan C and Zhu Y 2011 J. Phys. Chem. C 115 4680
[34] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2008 Chin. Phys. Lett. 25 3735
[24] Wu Z, Zhao E, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B. 76 054115
[35] Ming X, Wang C Z, Fan H G, Hu F, Wei Y J, Huang Z F, Meng X and Chen G 2008 J. Phys.:Condens. Matter 20 395204
[25] Hill R 1952 Proc. Phys. Soc. A 65 349
[36] Chen D G, Cheng W D, Wu D S, Zhang H, Zhang Y C, Gong Y J and Kan Z G 2005 Solid State Sci. 7 179
[26] Winkler B, Guzman A C, Wiehl L, Bayarjargal L and Milman V 2012 Solid State Sci. 14 1080
[37] Alemi A, Mohseni N, Dolatyari M and Bakhtiari A 2012 Int. J. Bio-Inorg. Hybd. Nanomat. 1 79
[27] Yoo M H 1981 Metall. Trans. A 12 409
[28] Shakil M, Zafar M, Ahmed S, Choudhary M A and Iqbal T 2016 Chin. Phys. B 25 076104
[38] Smith N V 1971 Phys. Rev. B 3 1862
[39] Yun J N and Zhang Z Y 2009 Chin. Phys. B. 18 2945
[29] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[40] Li Y L, Fan W L, Sun H G, Cheng X F, Li P, Zhao X, Hao J C and Jiang M H 2010 J. Phys. Chem. A 114 1052
[30] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[31] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[41] Babu K R, Lingam C B, Auluck S, Tewari S P and Vaitheeswaran G 2011 J. Solid State Chem. 184 343
[32] Vaitheeswaran G, Kanchana V, Svane A and Delin A 2007 J. Phys.:Condens. Matter 19 326214
[42] Furno M, Meerheim R, Hofmann S, Lüssem B and Leo K 2012 Phys. Rev. B 85 115205
[33] Ma X, Lu B, Li D, Shi R, Pan C and Zhu Y 2011 J. Phys. Chem. C 115 4680
[34] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2008 Chin. Phys. Lett. 25 3735
[35] Ming X, Wang C Z, Fan H G, Hu F, Wei Y J, Huang Z F, Meng X and Chen G 2008 J. Phys.:Condens. Matter 20 395204
[36] Chen D G, Cheng W D, Wu D S, Zhang H, Zhang Y C, Gong Y J and Kan Z G 2005 Solid State Sci. 7 179
[37] Alemi A, Mohseni N, Dolatyari M and Bakhtiari A 2012 Int. J. Bio-Inorg. Hybd. Nanomat. 1 79
[38] Smith N V 1971 Phys. Rev. B 3 1862
[39] Yun J N and Zhang Z Y 2009 Chin. Phys. B. 18 2945
[40] Li Y L, Fan W L, Sun H G, Cheng X F, Li P, Zhao X, Hao J C and Jiang M H 2010 J. Phys. Chem. A 114 1052
[41] Babu K R, Lingam C B, Auluck S, Tewari S P and Vaitheeswaran G 2011 J. Solid State Chem. 184 343
[42] Furno M, Meerheim R, Hofmann S, Lüssem B and Leo K 2012 Phys. Rev. B 85 115205
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!