CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation |
Nan-Lin He(何南燐)1, Xin-Lu Cheng(程新路)1,2, Hong Zhang(张红)1,2,3, Gai-Qin Yan(闫改琴)3, Jia Zhang(张佳)1 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China; 3 College of Physical Science and Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract Group IVB carbides have been applied in extreme aerospace environments as hard ceramic coatings; ZrC is being considered as a replacement for SiC in nuclear reactors. Therefore, a thorough understanding of the laser irradiation response of group IVB carbides is of clear significance. However, the existing knowledge on the fundamental properties of IVB group carbides is limited and insufficient with regard to both irradiated and non-irradiated characteristics. We investigate the effect of ultrafast laser irradiation on the lattice stability of ceramic materials (IVB group carbides) using the density functional perturbation theory (DFPT). The calculated phonon frequencies of TiC and ZrC at the ground state are in good agreement with previous calculations and experimental values. The phonon frequencies of IVB group carbides are positive, even though the electronic temperature reached 5 eV. Thus, IVB group carbides are more stable under ultrafast laser irradiation, which has greater benefits in nuclear and aeronautical applications compared to metals (W, Na), semimetals (Bi), and semiconductors (Si, SiC). The thermodynamic properties of ZrC are calculated as functions of their lattice temperature at different electronic temperatures. The elastic shear constants of IVB group carbides satisfy the Born stability criteria at Te=5 eV. In addition, a comparison of the predicted melting temperatures of IVB group carbides, reveal that HfC is better suited for extreme high-temperature environments.
|
Received: 02 September 2017
Revised: 10 December 2017
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
62.20.de
|
(Elastic moduli)
|
|
62.20.dq
|
(Other elastic constants)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217). |
Corresponding Authors:
Xin-Lu Cheng
E-mail: chengxl@scu.edu.cn
|
Cite this article:
Nan-Lin He(何南燐), Xin-Lu Cheng(程新路), Hong Zhang(张红), Gai-Qin Yan(闫改琴), Jia Zhang(张佳) First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation 2018 Chin. Phys. B 27 036301
|
[1] |
Harrison R W and Lee W E 2016 Adv. Appl. Cream. 115 294
|
[2] |
Hwu H and Chen J G 2005 Chem. Rev. 105 185
|
[3] |
Price D L and Cooper B R 1989 Phys. Rev. B 39 4945
|
[4] |
Craciun D, Socol G, Lambers E, McCumiskey E J, Taylor C R, Martin C, Argibay N and Craciun V 2015 Appl. Surf. Sci. 352 28
|
[5] |
Upadhya K, Yang J M and Hoffman W P 1997 Am. Ceram. Soc. Bull. 76 51
|
[6] |
Reynolds G H, Janivier J C, Kaae J L and Morlevat J P 1976 J. Nucl. Mater. 62 9
|
[7] |
Minato K, Ogawa T, Fukuda K, Nabielek H, Sekino H, Nozawaw Y and Takahashi L 1995 J. Nucl. Mater. 224 85
|
[8] |
Yutai K, Gokul V, Takashi N and Lance L S 2013 J. Nucl. Mater. 441 718
|
[9] |
Shen Y H and Gao T 2015 J. Alloy. Compd. 645 193
|
[10] |
Mayrhofer P H, Mitterer C, Hultman L and Clemens H 2006 Progr. Mater. Sci. 51 1032
|
[11] |
Amir S G and Omid G 2012 Aircr. Eng. Aerosp. Tec. 84 75
|
[12] |
Lance L S, Yutai K and Sosuke K 2010 J. Nucl. Mater. 399 200
|
[13] |
Hojou K, Otsu H, Furuno S, Sasajima N and lzui K 1996 J. Nucl. Mater. 239 279
|
[14] |
Gan J, Yang Y, Dickson C and Allen T 2009 J. Nucl. Mater. 389 317
|
[15] |
Huang Y, Maier B R and Allen T R 2014 Nucl. Eng. Des. 277 55
|
[16] |
Hu X D and Nori F 1997 Phys. Rev. Lett. 79 4605
|
[17] |
Kitagawa R, Takebe H and Morinaga K 2003 Appl. Phys. Lett. 82 3641
|
[18] |
Cavalleri A, Tóth Cs, Siders C W, Squier J A, Raksi F, Forget P and Kieffer J C 2001 Phys. Rev. Lett. 87 237401
|
[19] |
Zijlstra E S, Huntemann N and Garcia M E 2008 New J. Phys. 10 033010
|
[20] |
Diakhate M S and Garcia M E 2009 Phys. Rev. B 79 094117
|
[21] |
Jeschke H O, Garcia M E, Lenzner M, Bonse J, Krüger J and Kautek W 2002 Appl. Surf. Sci. 197 839
|
[22] |
Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Forster E, Geindre J P, Audebert P, Gauthier J C and Hulin D 2001 Nature 410 65
|
[23] |
Johnson S L, Heimann P A, Lindenberg A M, Jeschke H O, Garcia M E, Chang Z, Lee R W, Rehr J and Falcone R W 2003 Phys. Rev. Lett. 91 157403
|
[24] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[25] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[26] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[27] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[28] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[29] |
Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
|
[30] |
Kresse G, Furthmuller J and Hafner J 1995 Europhys. Lett. 32 729
|
[31] |
Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
|
[32] |
Baroni S, Gironcoli S de, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[33] |
Lee C and Gonze X 1995 Phys. Rev. B 51 8610
|
[34] |
Feng S Q, Zang H P, Wang Y Q, Cheng X L and Yue J S 2016 Chin. Phys. B 25 016701
|
[35] |
Yan G Q, Cheng X L, Zhang H, Zhu Z and Ren D H 2016 Phys. Rev. B 93 214302
|
[36] |
Souadkia M, Bennecer B and Kalarasse F 2013 J. Phys. Chem. Solids. 74 1615
|
[37] |
Recoules V, Clérouin J, Zérah G, Anglade P M and Mazevet S 2006 Phys. Rev. Lett. 96 055503
|
[38] |
Nartowski A M, Parkin I P, MacKenzie M, Craven A J and MacLeod I 1999 J. Mater. Chem. 9 1275
|
[39] |
Yvelin G, Szymon L D, Dorothy M D, Alexander L S and Katsumi T 2014 Phys. Rev. B 90 094103
|
[40] |
Mazevet S, Clerouin J, Recoules V, Anglade P M and Zerah G 2005 Phys. Rev. Lett. 95 085002
|
[41] |
Giret Y, Gelle A and Arnaud B 2011 Phys. Rev. Lett. 106 155503
|
[42] |
Pintschovius L, Reichardt W and Scheerer B 1978 J. Phys. C:Solid State Phys. 11 1557
|
[43] |
Weber W 1973 Phys. Rev. B 8 5083
|
[44] |
Isaev E I, Ahuja R, Simak S I, Lichtenstein A I, Vekilov Yu Kh, Johansson B and Abrikosov I A 2005 Phys. Rev. B 72 064515
|
[45] |
Feng S Q, Zhao J L, Cheng X L and Zhang H 2013 J. Appl. Phys. 114 043519
|
[46] |
Chauhan M and Gupta D C 2013 Diam. Relat. Mater. 40 96
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|