Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017105    DOI: 10.1088/1674-1056/28/1/017105
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Review of gallium oxide based field-effect transistors and Schottky barrier diodes

Zeng Liu(刘增)1,2, Pei-Gang Li(李培刚)1,2, Yu-Song Zhi(支钰崧)1,2, Xiao-Long Wang(王小龙)1,2, Xu-Long Chu(褚旭龙)1,3, Wei-Hua Tang(唐为华)1,2
1 Laboratory of Information Functional Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 China Aerospace Academy of Systems Science and Engineering, Beijing 100048, China
Abstract  Gallium oxide (Ga2O3), a typical ultra wide bandgap semiconductor, with a bandgap of~4.9 eV, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices. Recently, a keen interest in employing Ga2O3 in power devices has been aroused. Many researches have verified that Ga2O3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors (FETs) and Schottky barrier diodes (SBDs) based on Ga2O3, which may provide a guideline for Ga2O3 to be preferably used in power devices fabrication.
Keywords:  gallium oxide (Ga2O3)      field-effect transistors (FETs)      Schottky barrier diodes (SBDs)  
Received:  13 August 2018      Revised:  04 November 2018      Accepted manuscript online: 
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774019, 51572033, and 51572241) and the Beijing Municipal Commission of Science and Technology, China (Grant No. SX2018-04).
Corresponding Authors:  Pei-Gang Li, Wei-Hua Tang     E-mail:  pgli@bupt.edu.cn;whtang@bupt.edu.cn

Cite this article: 

Zeng Liu(刘增), Pei-Gang Li(李培刚), Yu-Song Zhi(支钰崧), Xiao-Long Wang(王小龙), Xu-Long Chu(褚旭龙), Wei-Hua Tang(唐为华) Review of gallium oxide based field-effect transistors and Schottky barrier diodes 2019 Chin. Phys. B 28 017105

[1] Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945
[2] Zhang Y H, Mei Z X, Liang H L and Du X L 2017 Chin. Phys. B 26 047307
[3] Pearton S, Yang J, Cary P, Ren F, Kim J, Tadjer M and Mastro M 2018 Appl. Phys. Rev. 5 011301
[4] Higashiwaki M and Jessen G H 2018 Appl. Phys. Lett. 112 060401
[5] Mastro M, Kuramata A, Calkins J, Kim J, Ren F and Pearton S 2017 ECS J. Solid State Sci. Technol. 6 P356
[6] Kim M, Seo J H, Singisetti U and Ma Z Q 2017 J. Mater. Chem. C 5 8338
[7] Labram J G, Lin Y H and Anthopoulos T D 2015 Small 11 5472
[8] Lin Y H, Faber H, Labram J G, Stratakis E, Sygellou L, Kymakis E, Hastas N A, Li R, Zhao K, Amassian A, Treat N D, McLachlan M and Anthopoulos T D 2015 Adv. Sci. 2 1500058
[9] Roy R, Hill V and Osborn E 1952 J. Am. Chem. Soc. 74 719
[10] Playford H Y, Hannon A C, Barney E R and Walton R I 2013 Chem. Eur. J. 19 2803
[11] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504
[12] Tippins H H 1965 Phys. Rev. 140 A316
[13] Hudgins J, Simin G, Santi E and Khan M 2003 IEEE Trans. Power Electron. 18 907
[14] Geller S 1960 J. Chem. Phys. 33 676
[15] Zhao B, Wang F, Chen H Y, Zhang L X, Su L X, Zhao D X and Fang X S 2017 Adv. Funct. Mater. 27 1700264
[16] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136
[17] Feng Q, Huang L, Han G Q, Li F G, Li X, Fang L W, Xing X Y, Zhang J C, Mu W X, Jia Z T, Guo D Y, Tang W H, Tao X T and Hao Y 2016 IEEE Trans. Electron. Devices 63 3578
[18] Kalita G, Mahyavanshi R D, Desai P, Ranada A K, Kondo M, Dewa T and Tanemura M 2018 Phys. Status Solidi RRL 12 1800198
[19] Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F and Tang W H 2017 J. Mater. Chem. C 5 8688
[20] Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G and Tang W H 2018 Opt. Mater. Express 8 2918
[21] Feng H F, Hao W C, Zhao C Z, Xin X D, Cheng J Y, Cui Y M, Chen Y and Wang W J 2013 Phys. Status Solidi A 210 1861
[22] Kim S, Han K I, Lee I G, Yoon Y, Park W K, Hong S W, Yang W S and Hwang W S 2017 Catalysts 7 248
[23] Bartic M 2016 Phys. Status Solidi A 213 457
[24] Yu C, Cao M, Yan D, Lou S, Xia C, Xuan T, Xie R J and Li H 2018 J. Colloid Interf. Sci. 530 52
[25] Guo D Y, Wu Z P, An Y H, Li P G, Wang P C, Chu X L, Guo X C, Zhi Y S, Lei M, Li L H and Tang W H 2015 Appl. Phys. Lett. 106 042105
[26] Lee D Y and Tseng T Y 2011 J. Appl. Phys. 110 114117
[27] Guo D Y, Wu Z P, Zhang L J, Yang T, Hu Q R, Lei M, Li P G, Li L H and Tang W H 2015 Appl. Phys. Lett. 107 032104
[28] Zhi Y S, Li P G, Wang P C, Guo D Y, An Y H, Wu Z P, Chu X L, Shen J Q, Tang W H and Li C R 2016 AIP Adv. 6 015215
[29] Baliga B J 1989 IEEE Electron Device Lett. 10 455
[30] Baliga B J 1982 J. Appl. Phys. 53 1759
[31] Villora E, Shimamura K, Yoshikawa Y, Aoki K and Ichinose N 2004 J. Cryst. Growth 270 420
[32] Shimamura K and Villora E G 2013 Acta Phys. Pol. A 124 265
[33] Aida H, Nishiguchi K, Takeda H, Aota N, Sunakawa K and Yaguchi Y 2008 Jpn. J. Appl. Phys. 47 8506
[34] Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M, Brutzam M and Bertram R 2010 Cryst. Res. Technol. 45 1229
[35] Hong D, Yerubandi G, Chiang H Q, Spiegelberg M C and Wager J F 2008 Crit. Rev. Solid State Mater. Sci. 33 101
[36] Chang P C, Fan Z Y, Tseng W Y, Rajagopal A and Lu J G 2005 Appl. Phys. Lett. 87 222102
[37] Arthur J R and LePore J J 1969 J. Vac. Sci. Technol. 6 545
[38] Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2006 Thin Solid Films 496 37
[39] Matsuzaki K, Yanagi H, Kamiyab T, Hiramatsu H, Nomura K, Hirano M and Hosono H 2006 Appl. Phys. Lett. 88 092106
[40] Dang G T, Kawaharamura T, Furuta M and Allen M W 2015 IEEE Trans. Electron. Devices 62 3640
[41] Shinohara D and Fujita S 2008 Jpn. J. Appl. Phys. 47 7311
[42] Xia Z B, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y, Brenner M, Lodha S and Rajan S 2018 IEEE Electron Device Lett. 39 568
[43] McGlone J F, Xia Z B, Zhang Y W, Joishi C, Lodha S, Rajan S, Ringel S A and Arehart A R 2018 IEEE Electron Device Lett. 39 1042
[44] Bhuiyan M A, Zhou H, Jiang R, Zhang E X, Fleetwood D M, Ye P D and Ma T P 2018 IEEE Electron Device Lett. 39 1022
[45] Fleetwood D M, Winokur P S, Reber, Jr., R A, Meisenheimer T L, Schwank J R, Shaneyfelt M R and Rieweb L C 1993 J. Appl. Phys. 73 5058
[46] Joishi C, Xia Z B, McGlone J, Zhang Y W, Arehart A R, Ringel S, Lodha S and Rajan S 2018 Appl. Phys. Lett. 11 123501
[47] Åhman J, GÖran S and Albertsson J 1996 Acta Cryst. C52 1336
[48] Bae J, Kim H W, Kang I H, Yang G and Kim J 2018 Appl. Phys. Lett. 112 122102
[49] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[50] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[51] Krishnamoorthy S, Xia Z B, Joishi C, Zhang Y W, McGlone J, Johnson J, Brenner M, Arehart A R, Hwang J, Lodha S and Rajan S 2017 Appl. Phys. Lett. 111 023502
[52] Zhang Y W, Joishi C, Xia Z B, Brenner M, Lodha S and Rajan S 2018 Appl. Phys. Lett. 112 233503
[53] Wang T, Li W, Ni C and Janotti A 2018 Phys. Rev. Appl. 10 011003
[54] Higashiwaki M, Sasaki K, Kamimura T, Wong M H, Krishnamurthy D, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Lett. 103 123511
[55] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Express 6 086502
[56] Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2016 Jpn. J. Appl. Phys. 55 1202B9
[57] Wong M H, Morikawa Y, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2016 Appl. Phys. Lett. 109 193503
[58] Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2016 IEEE Electron Device Lett. 37 212
[59] Wong M H, Takeyama A, Makino T, Ohshima T, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2018 Appl. Phys. Lett. 112 023503
[60] Yang G, Jang S, Ren F and Pearton S J 2017 ACS Appl. Mater. Interfaces 9 40471
[61] Wong M H, Nakata Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Express 10 041101
[62] Green A J, Chabak K D, Heller E R, Fitch R C, Baldini M, Fiedler A, Irmscher K, Wagner G, Galazka Z, Tetlak S E, Crespo A, Leedy K and Jessen G H 2016 IEEE Electron Device Lett. 37 902
[63] Chabak K D, Moser N, Green A J, Walker D E, Tetlak S E, Heller E, Crespo A, Fitch R, McCandless J P, Leedy K, Baldini M, Wagner G, Galazka Z, Li X and Jessen G 2016 Appl. Phys. Lett. 109 213501
[64] Green A J, Chabak K D, Baldini M, Moser N, Gilbert R, Fitch R C, Wagner G, Galazka Z, McCandless J, Crespo A, Leedy K and Jessen G H 2017 IEEE Electron Device Lett. 38 790
[65] Singh M, Casbon M A, Uren M J, Pomeroy J W, Dalcanale S, Karboyan S, Tasker P J, Wong M H, Sasaki K, Kuramata A, Yamakoshi S, Higashiwaki M and Kuball M 2018 IEEE Electron Device Lett. 39 1572
[66] Chabak K D, McCandless J P, Moser N A, Green A J, Mahalingam K, Crespo A, Hendricks N, Howe B M, Tetlak S E, Leedy K, Fitch R C, Wakimoto D, Sasaki K, Kuramata A and Jessen G H 2018 IEEE Electron Device Lett. 39 67
[67] Lv Y J, Mo J H, Song X B, He Z Z, Wang Y G, Tan X, Zhou X Y, Gu G D, Gu H Y and Feng Z H 2018 Superlattices Microstruct. 117 132
[68] Moser N A, McCandless J P, Crespo A, Leedy K D, Green A J, Heller E R, Chabak K D, Peixoto N and Jessen G H 2017 Appl. Phys. Lett. 110 143505
[69] Guo Z, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D and Luo T 2015 Appl. Phys. Lett. 106 111909
[70] Joh J, Alamo J, Chowdhury U, Chou T, Tserng H and Jimenez J 2009 IEEE Trans. Electron. Devices 56 2895
[71] Lany S 2018 APL Mater. 6 046103
[72] Moser N, McCandless J, Crespo A, Leedy K, Green A, Neal A, Mou S, Ahmadi E, Speck J, Chabak K, Peixoto N and Jessen G 2017 IEEE Electron Device Lett. 38 775
[73] Krishnamoorthy S, Xia Z, Bajaj S, Brenner M and Rajan S 2017 Appl. Phys. Express 10 051102
[74] Tadjer M J, Mastro M A, Mahadik N A, Currie M, Wheeler V D, Freitas J A, Greenlee J D, Hite J K, Hobart K D, Eddy C R and Kub F J 2016 J. Electron. Mater. 45 2031
[75] Chen J X, Tao J J, Ma H P, Zhang H, Feng J J, Liu W J, Xia C T, Lu H L and Zhang D W 2018 Appl. Phys. Lett. 112 261602
[76] Kamimura T, Sasaki K, Wong M H, Krishnamurthy D, Kuramata A, Masui T, Yamakoshi S and Higashiwaki M 2014 Appl. Phys. Lett. 104 192104
[77] Ahn S, Ren F, Kim J, Oh S, Kim J, Mastro M A and Pearton S J 2016 Appl. Phys. Lett. 109 062102
[78] Kim J, Mastro M A, Tadjer M J and Kim J 2017 ACS Appl. Mater. Interfaces 9 21322
[79] Kim J, Mastro M A, Tadjer M J and Kim J 2018 ACS Appl. Mater. Interfaces 10 29724
[80] Tadjer M J, Mahadik N A, Wheeler V D, Glaser E R, Ruppalt L, Koehler A D, Hobart K D, Eddy C R and Kub F J 2016 ECS J. Solid State Sci. Technol. 5 P468
[81] Zeng K, Wallace J S, Heimburger C, Sasaki K, Kuramata A, Masui T, Gardella J A and Singisetti U 2017 IEEE Electron Device Lett. 38 513
[82] Zeng K, Vaidya A and Singisetti U 2018 IEEE Electron Device Lett. 39 1385
[83] Sasaki K, Thieu Q T, Wakimoto D, Koishikawa Y, Kuramata A and Yamakoshi S 2017 Appl. Phys. Express 10 124201
[84] Wong M H, Goto K, Morikawa Y, Kuramata A K, Yamakoshi S, Murakami H, Kumagai Y and Higashiwaki M 2018 Appl. Phys. Express 11 064102
[85] Hu Z Y, Nomoto K, Li W, Tanen N, Sasaki K, Kuramata A, Nakamura T, Jena D and Xing H G 2018 IEEE Electron Device Lett. 39 869
[86] Hu Z Y, Nomoto K, Li W, Zhang Z, Tanen N, Thieu Q T, Sasaki K, Kuramata A, Nakamura T, Jena D and Xing H G 2018 Appl. Phys. Lett. 113 122103
[87] Kaun S W, Wu F and Speck J S 2015 J. Vac. Sci. Technol. A 33 041508
[88] Krueger B W, Dandeneau C S, Nelson W M, Dunham S T, Ohuchi F S and Olmstead M A 2016 J. Am. Ceram. Soc. 99 2467
[89] Ahmadi E, Koksaldi O S, Zheng X, Mates T, Oshima Y, Mishra U K and Speck J S 2017 Appl. Phys. Express 10 071101
[90] Oshima T, Kato Y, Kawano N, Kuramata A, Yamakoshi S, Fujita S, Oishi T and Kasu M 2017 Appl. Phys. Express 10 035701
[91] Russell S A O, Tomas A P, Mcconcille C F, Fisher C A, Hamilton D P, Mawany P A and Jennings M R 2017 IEEE J. Electron. Devices Soc. 5 256
[92] Martin-Horcajo S, Wang A, Romero M F, Tadjer M J and Calle F 2013 IEEE Trans. Electron. Devices 60 4105
[93] Hwang W S, Verma A, Peelaers H, Protasenko V, Rouvimov S, Xing H, Seabaugh A, Haensch W, Walle C, Galazka Z, Albrecht M, Fornari F and Jena D 2014 Appl. Phys. Lett. 104 203111
[94] Kim J, Oh S, Mastro M A and Kim J 2016 Phys. Chem. Chem. Phys. 18 15760
[95] Zhou H, Maize K, Qiu G, Shakouri A and Ye P D 2017 Appl. Phys. Lett. 111 092102
[96] Zhou H, Maize K, Noh J, Shakouri A and Ye P D 2017 ACS Omega 2 7723
[97] Zhou H, Si M, Alghamdi S, Qiu G, Yang L and Ye P D 2017 IEEE Electron Device Lett. 38 103
[98] Son J, Kwon Y, Kim J and Kim J 2018 ECS J. Solid State Sci. Technol. 7 Q148
[99] Ma J, Lee O and Yoo G 2018 IEEE J. Electron. Devices Soc. 6 1124
[100] Moore G E 1998 Proc. IEEE 86 82
[101] Schütz A, Selberherr S and Pötzl H W 1984 Solid State Electron. 27 394
[102] Sze S M and Gibbons G 1966 Appl. Phys. Lett. 8 111
[103] http://www.semiconductor-today.com/news_items/2018/aug/agnitron_220818.shtml[2018-08-22]
[104] Rafique S, Han L, Mou S and Zhao H 2017 Opt. Mater. Express 7 3561
[105] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[106] Lee S Y, Chang S and Lee J S 2010 Thin Solid Films 518 3030
[107] Carey I V P H, Ren F, Hays D C, Gila B P, Pearton S J, Jang S and Kuramata 2017 Vacuum 142 52
[108] Jia Y, Zeng K, Wallace J S, Gardella J A and Singisetti U 2015 Appl. Phys. Lett. 106 102107
[109] Konishi K, Kamimura T, Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2016 Phys. Status Solidi B 253 623
[110] Wheeler V D, Shahin D I, Tadjer M J, Eddy Jr. and C R 2017 ECS J. Solid State Sci. Technol. 6 Q3052
[111] Carey I V P H, Ren F, Hays D C, Gila B P, Pearton S J, Jang S and Kuramata A 2017 J. Vac. Sci. Technol. B 35 041201
[112] Alkauskas A, Broqvist P, Devynck F and Pasquareello A 2008 Phys. Rev. Lett. 101 106802
[113] Kroemer H 2001 Rev. Mod. Phys. 73 783
[114] Zhou H, Alghmadi S, Si M, Qiu G and Ye P D 2016 IEEE Electron Device Lett. 37 1411
[115] Huan Y W, Sun S M, Gu C J, Liu W J, Ding S J, Yu H Y, Xia C T and Zhang D W 2018 Nanoscale Res. Lett. 13 246
[116] Bae J, Kim H Y and Kim J 2017 ECS J. Solid State Sci. Technol. 6 Q3045
[117] Qin Z X, Chen Z Z, Tong Y Z, Ding X M, Hu X D and Yu T J 2004 Appl. Phys. A 78 729
[118] Min J K and Kim T G 2016 ACS Appl. Mater. Interfaces 8 5453
[119] Walsh A, Da S J and Wei S H 2011 J. Phys.: Condens. Matter 23 334210
[120] Bardeen J 1947 Phys. Rev. 71 717
[121] Parisini A and Fornari R 2016 Semicond. Sci. Technol. 31 035023
[122] Liu C, Li G T, Pietro R D, Huang J, Noh Y Y, Liu X Y and Minari T 2017 Phys. Rev. Appl. 8 034020
[123] Tung R T 2001 Mater. Sci. Eng. R 35 1
[124] Tersoff J 1984 Phys. Rev. Lett. 52 465
[125] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Chichester: John Wiley and Sons)
[126] He H, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rerat M 2006 Phys. Rev. B 74 195123
[127] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Device Lett. 34 493
[128] Michaelson H B 1977 J. Appl. Phys. 48 4729
[129] Frenzal H, Wenckstern A, Biehne G, Hochmuth H and Grundmann M 2009 Thin Solid Films 518 1119
[130] Schlupp P, Wenckstern H and Grundmann M 2017 Phys. Status Solidi A 214 1700210
[131] Jarjour A, Cox J, Ruane W, Wenckstern H, Grundmann M and Brillson L 2018 Ann. Phys. (Berlin) 530 1700335
[132] Tan D, Xiang Y, Leng Y G and Leng Y S 2018 Nano Energy 50 291
[133] Ito A and Matsunami H 1997 Phys. Status Solidi A 162 389
[134] Saxena A, Su J N and Steckl A J 1999 IEEE Trans. Electron. Devices 46 456
[135] Wang L, Nathan M I, Lim T H, Khan M A and Chen Q 1996 Appl. Phys. Lett. 68 1267
[136] Sasaki K, Kuramata A, Massui T, Villora E G, Shimamura K and Yamakoshi S 2012 Appl. Phys. Express 5 035502
[137] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503
[138] Tadjer M J, Wheeler V D, Shahin D I, Eddy C R and Kub F J 2017 ECS J. Solid State Sci. Technol. 6 P165
[139] Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506
[140] Joishi C, Rafique S, Xia Z, Han L, Krishnamoorthy S, Zhang Y, Lodha S, Zhao H and Rajan S 2018 Appl. Phys. Express 11 031101
[141] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X and Liu M 2017 Appl. Phys. Lett. 110 093503
[142] He Q, Mu W, Fu B, Jia Z, Long S, Yu Z, Yao Z, Wang W, Dong H, Qin Y, Jian G, Zhang Y, Xue H, Lv H, Liu Q, Tang M, Tao X and Liu M 2018 IEEE Electron Device Lett. 39 556
[143] Jian G, He Q, Mu W, Fu B, Dong H, Qin Y, Zhang Y, Xue H, Long S, Jia Z, Lv H, Liu Q, Tao X and Liu M 2018 AIP Adv. 8 015316
[144] Lu X, Zhou L, Chen L, Ouyang X, Liu B, Xu J and Tang H 2018 Appl. Phys. Lett. 112 103502
[145] Oda M, Tokuda R, Kambara H, Tanikawa T, Sasaki T and Hitora T 2016 Appl. Phys. Express 9 021101
[146] Kaneko K, Fujita S and Hitora T 2018 Jpn. J. Appl. Phys. 57 02CB18
[147] Guo D Y, Zhao X L, Zhi Y S, Cui W, Huang Y Q, An Y H, Li P G, Wu Z P and Tang W H 2016 Mater. Lett. 164 364
[148] Nishinaka H, Tahara D, Morimoto S and Yoshimoto M 2017 Mater. Lett. 205 28
[149] Cusco R, Amador N D, Hatakeyama T, Yanaguchi T, Honda T and Artus L 2015 J. Appl. Phys. 117 185706
[150] Kracht M, Karg A, Feneberg M, Jlasing J, Schormann J, Goldhahn R and Eickhoff M 2018 Phys. Rev. Appl. 10 024407
[151] Watahiki T, Yuda Y, Furukawa A, Yamamuka M, Takiguchi Y and Miyajima S 2017 Appl. Phys. Lett. 111 222104
[152] Fu H Q, Chen H, Huang X Q, Baranowski I, Montes J, Yang T H and Zhao Y 2018 IEEE Trans. Electron. Devices 65 3507
[153] Zhang Z, Farzana E, Arehart A R and Ringel S A 2016 Appl. Phys. Lett. 108 052105
[154] Chung S K and Chung N W 1986 Appl. Phys. Lett. 49 85
[155] Farzana E, Ahmadi E, Speck J S, Arehart A R and Ringel S A 2018 J. Appl. Phys. 123 161410
[156] Blood P 1986 Semicond. Sci. Technol. 1 7
[157] Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W and Tang W H 2017 J. Mater. Chem. C 5 10562
[158] Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C and Tang W 2017 ACS Appl. Mater. Interfaces 9 1619
[159] Peng Y K, Zhang Y, Chen Z W, Guo D Y, Zhang X, Li P G, Wu Z P and Tang W H 2018 IEEE Photon. Technol. Lett. 30 993
[160] Armstrong A M, Crawoford M H, Jayawardena A, Ahyi A and Dhar S 2016 J. Appl. Phys. 119 103102
[161] Oishi T, Harada K, Koga Y and Kasu M 2016 Jpn. J. Appl. Phys. 55 030305
[162] Yang J, Ahn S, Ren F, Pearton S, Khanna R, Bevlin K, Geerpuram D and Kuramata A 2017 J. Vac. Sci. Technol. B 35 031205
[163] Yang J, Ahn S, Ren F, Khanna R, Bevlin K, Geerpuram D, Pearton S J and Kuramata A 2017 Appl. Phys. Lett. 110 142101
[164] Yang J, Ahn S, Ren F, Pearton S J, Jang S, Kim J and Kuramata A 2017 Appl. Phys. Lett. 110 192101
[165] Yang J, Ahn S, Ren F, Pearton S J, Jang S and Kuramata A 2017 IEEE Electron Device Lett. 38 906
[166] Yang J, Ren F, Pearton S J, Yang G, Kim J and Kuramata A 2017 J. Vac. Sci. Technol. B 35 031208
[167] Yang J, Ren F, Tadjer M, Pearton S J and Kuramata A 2018 AIP Adv. 8 055026
[168] Oh S, Yang G and Kim J 2017 ECS J. Solid State Sci. Technol. 6 Q3022
[169] Ahmadi E, Oshima Y, Wu F and Speck J S 2017 Semicond. Sci. Technol. 32 035004
[170] Feng Q, Feng Z, Hu Z, Xing X, Yan G, Zhang J, Xu Y, Lian X and Hao Y 2018 Appl. Phys. Lett. 112 072103
[171] Feng Q, Hu Z, Feng Z, Xing X, Zuo Y, Yan G, Lu X, Zhang C, Zhou H and Zhang J 2018 Superlattices Microstruct. 120 441
[172] Tung R T 1992 Phys. Rev. B 45 13509
[173] Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H and Hao Y 2018 Superlattices Microstruct. 119 212
[174] Hu Z, Zhou H, Dang K, Cai Y, Feng Z, Gao Y, Feng Q, Zhang J and Hao Y 2018 IEEE J. Electron. Devices Soc. 6 815
[175] Hu Z, Zhou H, Feng Q, Zhang J, Zhang C, Dang K, Cai Y, Feng Z, Gao Y, Kang X and Hao Y 2018 IEEE Electron Device Lett. 39 1564
[176] Yang J, Ren F, Tadjer M J, Pearton S J and Kuramata A 2018 ECS J. Solid State Sci. Technol. 7 Q92
[177] Farzana E, Zhang Z, Paul P K, Arehart A R and Ringel S A 2017 Appl. Phys. Lett. 110 202102
[178] Greco G, Giannazzo F, Fiorenza P, Franco S, Alberti A, Lucolano F, Cora L, Pecz B and Roccaforte F 2018 Phys. Status Solidi A 215 1700613
[179] Yao Y, Gangireddy R, Kim J, Das K K, Davis R F and Porter L M 2017 J. Vac. Sci. Technol. B 35 03D113
[180] Splith D, Muller S, Schmidt F, Wenckstern, Rensburg J, Meyer W and Grundmann M 2014 Phys. Status Solidi A 211 40
[181] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 J. Cryst. Growth 378 591
[182] Liu X Z, Yue C, Xia C T and Zhang W L 2016 Chin. Phys. B 25 017201
[183] Shahin D, Tadjer M, Wheeler V, Koehler A, Anderson T, Eddy C and Christou A 2018 Appl. Phys. Lett. 112 042107
[184] Sasaki K, Wakimoto D, Thieu Q, Koishikawa Y, Kuramata A, Higashiwaki M and Yamakoshi S 2017 IEEE Electron Device Lett. 38 783
[185] Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G 2018 RSC Adv. 8 6341
[186] Frank J, Fleischer M and Meixner H 1996 Sens. Actuator B: Chem. 34 373
[187] Wei Y D, Li X J, Yang J Q, Liu C M, Zhao J Y, Liu Y and Dong S L 2018 Sci. Rep. 8 10142
[188] Arora K, Goel N, Kumar N and Kumar N 2018 ACS Photon. 5 2391
[189] Xue H W, He Q M, Jian G Z, Long S B, Pang T and Liu M 2018 Nanoscale Res. Lett. 13 290
[190] Dai X Q, Wang X L, Li W and Wang T X 2015 Chin. Phys. B 24 117308
[191] Tung R T 2014 Appl. Phys. Rev. 1 011304
[192] Robertson J 2000 J. Vac. Sci. Technol. B 18 1785
[193] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
[194] Chang C Y and Sze S M 1970 Solid State Electron. 13 727
[195] Cowley A M and Sze S M 1965 J. Appl. Phys. 36 3212
[196] Zeumault A and Subramanian V 2017 Phys. Status Solidi B 254 1700124
[197] Liu Z, Dai Z L, He C Q and Wang Y N 2015 Plasma Sci. Technol. 17 560
[198] Nishimura T, Kita K and Toriumi A 2007 Appl. Phys. Lett. 91 123123
[199] Zhang Y R, Zhang B, Li Z J and Deng X C 2010 Chin. Phys. B 19 067102
[200] Monch W 1970 Surf. Sci. 21 443
[201] Wang Z L 2003 Adv. Mater. 15 432
[202] Von Wenckstern H 2017 Adv. Electron. Mater. 3 1600350
[203] Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D: Appl. Phys. 51 163001
[204] Mende L S and Driscoll J L M 2007 Mater. Today 10 40
[205] Baliga B J 2013 Semicond. Sci. Technol. 28 074011
[206] Fujita S, Oda M, Kaneko K and Hitora T 2016 Jpn. J. Appl. Phys. 55 1202A3
[207] Stepanov S I, Nikolaev V I, Bougrov V E and Romanov A E 2016 Rev. Adv. Mater. Sci. 44 63
[208] Razeghi M, Park J H, McClintock R, Pavlidis D, Teherani D J, Magill B A, Khodaparast G A, Xu Y, Wu J and Dravid V P 2018 Proc. SPIE 10533 105330R
[209] Galazka Z 2018 Semicond. Sci. Technol. 33 113001
[210] Baldini M, Galazka Z and Wagner G 2018 Mater. Sci. Semicond. Process. 78 132
[211] Tsao J Y, Chowdhury S, Hollis M A, et al. 2018 Adv. Electron. Mater. 4 1600501
[1] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[2] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[3] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[4] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[5] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[6] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[7] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[8] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁)†, Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), and Zhipeng Wei(魏志鹏)‡. Chin. Phys. B, 2020, 29(10): 107102.
[9] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[10] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[11] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[12] Metal-to-insulator transition in two-dimensional ferromagnetic monolayer induced by substrate
Can Qi(齐灿), Jun Hu(胡军). Chin. Phys. B, 2018, 27(7): 077106.
[13] Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal
Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(1): 017104.
[14] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[15] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
No Suggested Reading articles found!