Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077106    DOI: 10.1088/1674-1056/27/7/077106

Metal-to-insulator transition in two-dimensional ferromagnetic monolayer induced by substrate

Can Qi(齐灿)1,2, Jun Hu(胡军)1,2
1 School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
2 Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China

Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spintronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a certain substrate without killing the ferromagnetism is still a challenge. Through systematic first-principles calculations, we proposed a new family of 2D FM materials which combines TaX (X=S, Se or Te) monolayer and Al2O3(0001) substrate. The TaX monolayers provide magnetic states and the Al2O3(0001) substrate stabilizes the former. Interestingly, the Al2O3(0001) substrate leads to a metal-to-insulator transition in the TaX monolayers and induces a band gap up to 303 meV. Our study paves the way to explore promising 2D FM materials for practical applications in spintronics devices.

Keywords:  metal-to-insulator transition      two-dimensional monolayer      ferromagnetic material  
Received:  19 March 2018      Revised:  18 April 2018      Accepted manuscript online: 
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  

Project supported by the National Natural Science Foundation of China (Grant No. 11574223), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150303), and the Jiangsu Specially-Appointed Professor Program of Jiangsu Province, China.

Corresponding Authors:  Jun Hu     E-mail:

Cite this article: 

Can Qi(齐灿), Jun Hu(胡军) Metal-to-insulator transition in two-dimensional ferromagnetic monolayer induced by substrate 2018 Chin. Phys. B 27 077106

[1] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Novoselov K, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[5] Mak K F, Lee D, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[6] Li L K, Yu Y J, Ye G J, Ge Q Q, Qu X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[7] Naguib M, Mochalin V N, Barsoum M W and Gogotsi 2014 Adv. Mater. 26 992
[8] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[9] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[10] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[11] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[12] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[13] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002
[14] Zhang S H and Liu B G 2017 arXiv 1706.08943
[15] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M and Batzill M 2018 Nat. Nanotechnol. 13 289
[16] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[17] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[18] Blöchl P E 1994 Phys. Rev. B 50 17953
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Wu R Q and Freeman A J 1999 J. Magn. Magn. Mater. 200 498
[22] Stierle A, Renner F, Streitel R, Dosch H, Drube W and Cowie B C 2004 Science 303 1652
[23] Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466
[24] Kresse G, Schmid M, Napetschnig E, Shishkin M, Köhler L and Varga P 2005 Science 308 1440
[25] Gautier M, Fenaud G, Van L P, Villette B, Pollak M, Thromat N, Jollet F and Duraud J P 1994 J. Am. Ceram. Soc. 77 323
[26] Zhao G, Smith J, Raynolds J and Srolovitz D J 1996 Interface Sci. 3 289
[27] Lodziana Z and Norskov J K 2001 J. Chem. Phys. 115 11261
[28] Ding Y, Wang Y, Ni J, Shi L, Shi S and Tang W 2011 Physica B 406 2254
[29] Manchanda P, Sharma V, Yu H B, Sellmyer D J and Skomski R 2015 Appl. Phys. Lett. 107 032402
[30] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 087504
[31] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501
[32] Tang W, Sanville E and Henkelman G 2009 J. Phys.:Condens. Matter 21 084204
[33] Masood H T, Muhammad Z, Habib M, Wang D M and Wang D L 2017 Chin. Phys. B 26 067503
[1] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[2] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[3] Negative refraction in ferromagnetic materials under external magnetic field: a theoretical analysis
Wei Jing-Song(魏劲松) and Xiao Mu-Fei(肖暮霏). Chin. Phys. B, 2010, 19(5): 057801.
No Suggested Reading articles found!