|
|
Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal |
Qing Hu(胡庆)1, Cong Yin(尹聪)1, Leilei Zhang(张雷雷)2, Li Lei(雷力)2, Zhengshang Wang(王正上)1, Zhiyu Chen(陈志禹)1, Jun Tang(唐军)1,3, Ran Ang(昂然)1,3 |
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
3 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract The evolution of electron correlation and charge density wave (CDW) in 1T-TaS2 single crystal has been investigated by temperature-dependent Raman scattering, which undergoes two obvious peaks of A1g modes about 70.8 cm-1 and 78.7 cm-1 at 80 K, respectively. The former peak at 70.8 cm-1 is accordant with the lower Hubbard band, resulting in the electron-correlation-driven Mott transition. Strikingly, the latter peak at 78.7 cm-1 shifts toward low energy with increasing the temperature, demonstrating the occurrence of nearly commensurate CDW phase (melted Mott phase). In this case, phonon transmission could be strongly coupled to commensurate CDW lattice via Coulomb interaction, which likely induces appearance of hexagonal domains suspended in an interdomain phase, composing the melted Mott phase characterized by a shallow electron pocket. Combining electronic structure, atomic structure, transport properties with Raman scattering, these findings provide a novel dimension in understanding the relationship between electronic correlation, charge order, and phonon dynamics.
|
Received: 02 November 2017
Revised: 09 November 2017
Accepted manuscript online:
|
PACS:
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771126 and 11774247), the Youth Foundation of Science and Technology Department of Sichuan Province, China (Grant No. 2016JQ0051), and the World First-Class University Construction Funding. |
Corresponding Authors:
Ran Ang, Li Lei
E-mail: rang@scu.edu.cn;lei@scu.edu.cn
|
Cite this article:
Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然) Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal 2018 Chin. Phys. B 27 017104
|
[1] |
Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K M and Lonzarich G G 1998 Nature 394 39
|
[2] |
Lefebvre S, Wzietek P, Brown S, Bourbonnais C, Jérome D, Méziére C, Fourmigué M and Batail P 2000 Phys. Rev. Lett. 85 5420
|
[3] |
Dagotto E 1994 Rev. Mod. Phys. 66 763
|
[4] |
Damascelli A, Hussain Z and Shen Z X 1994 Rev. Mod. Phys. 75 473
|
[5] |
Mattheiss L F 1973 Phys. Rev. B 8 3719
|
[6] |
Gabovich A M, Voitenko A I and Ausloos M 2002 Phys. Rep. 367 583
|
[7] |
Wang H T, Li L J, Ye D S, Cheng X H and Xu Z A 2007 Chin. Phys. B 16 2471
|
[8] |
Yang H T, Tao H J and Zhang Z X 1998 Chin. Phys. Lett. 15 123
|
[9] |
Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
|
[10] |
Fazekas P and Tosatti E 1979 Philos. Mag. B 39 229
|
[11] |
Manzke R, Buslaps T, Pfalzgraf B, Skibowski M and Anderson O 1989 Europhys. Lett. 8 195
|
[12] |
Thomson R E, Burk B, Zettl A and Clarke J 1994 Phys. Rev. B 49 16899
|
[13] |
Pillo T, Hayoz J, Berger H, Fasel R, Schlapbach L and Aebi P 2000 Phys. Rev. B 62 4277
|
[14] |
Scruby C B, Williams P M and Parry G S 1975 Philos. Mag. 31 255
|
[15] |
Rossnagel K and Smith N V 2006 Phys. Rev. B 73 073106
|
[16] |
Smith N V, Kevan S D and Disalvo F J 1985 J. Phys. C 18 3175
|
[17] |
Zwick F, Berger H, Vobornik I, Margaritondo G, Forró L, Beeli C, Onellion M, Panaccione G, Taleb-Ibrahimi A and Grioni M 1998 Phys. Rev. Lett. 81 1058
|
[18] |
Spijkerman A, de Boer J L, Meetsma A, Wiegers G A and van Smaalen S 1997 Phys. Rev. B 56 13757
|
[19] |
Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kalläne M, Marczynski-Bühlow M, Hennies F, Bauer M, Föhlisch A, Kipp L, Wurth W and Rossnagel K 2010 Phys. Rev. Lett. 105 187401
|
[20] |
Eichberger M, Schäfer H, Krumova M, Beyer M, Demsar J, Berger H, Moriena G, Sciani G and Miller R J D 2010 Nature 468 799
|
[21] |
Ishizaka K, Kiss T, Yamamoto T, Ishida Y, Saitoh T, Matsunami M, Eguchi R, Ohtsuki T, Kosuge A, Kanai T, Nohara M, Takagi H, Watanabe S and Shin S 2011 Phys. Rev. B 83 081104
|
[22] |
Petersen J C, Kaiser S, Dean N, Simoncig A, Liu H Y, Cavalieri A L, Cacho C, Turcu I C E, Springate E, Frassetto F, Poletto L, Dhesi S S, Berger H and Cavalleri A 2011 Phys. Rev. Lett. 107 177402
|
[23] |
Sugai S, Murase K, Uchida S and Tanaka S 1981 Physica B+C 105 405
|
[24] |
Duffey J R, Kirby R D and Coleman R V 1976 Solid State Commun. 20 617
|
[25] |
Pennycook S J and Boatner L A 1988 Nature 336 565
|
[26] |
Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Yamamoto T and Ikuhara Y 2009 Appl. Phys. Lett. 95 191913
|
[27] |
Uchida S and Sugai S 1981 Physica B+C 105 393
|
[28] |
He R, Okamoto J, Ye Z P, Ye G H, Anderson H, Dai X, Wu X X, Hu J P, Liu Y, Lu W J, Sun Y P, Pasupathy A N and Tsen A W 2016 Phys. Rev. B 94 201108
|
[29] |
Albertini O R, Zhao R, McCann R L, Feng S M, Terrones M, Freericks J K, Robinson J A and Liu A Y 2016 Phys. Rev. B 93 214109
|
[30] |
Pillo Th, Hayoz J, Berger H, Grioni M, Schlapbach L and Aebi P 1999 Phys. Rev. Lett. 83 3494
|
[31] |
Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L J, Lu W J, Sun Y P and Takahashi T 2012 Phys. Rev. Lett. 109 176403
|
[32] |
Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Berger H, Biermann S, Cornaglia P S, Georges A and Wolf M 2006 Phys. Rev. Lett. 97 067402
|
[33] |
Ang R, Miyata Y, Ieki E, Nakayama K, Sato T, Liu Y, Lu W J, Sun Y P and Takahashi T 2013 Phys. Rev. B 88 115145
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|