Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017104    DOI: 10.1088/1674-1056/27/1/017104
RAPID COMMUNICATION Prev   Next  

Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal

Qing Hu(胡庆)1, Cong Yin(尹聪)1, Leilei Zhang(张雷雷)2, Li Lei(雷力)2, Zhengshang Wang(王正上)1, Zhiyu Chen(陈志禹)1, Jun Tang(唐军)1,3, Ran Ang(昂然)1,3
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
3 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
Abstract  

The evolution of electron correlation and charge density wave (CDW) in 1T-TaS2 single crystal has been investigated by temperature-dependent Raman scattering, which undergoes two obvious peaks of A1g modes about 70.8 cm-1 and 78.7 cm-1 at 80 K, respectively. The former peak at 70.8 cm-1 is accordant with the lower Hubbard band, resulting in the electron-correlation-driven Mott transition. Strikingly, the latter peak at 78.7 cm-1 shifts toward low energy with increasing the temperature, demonstrating the occurrence of nearly commensurate CDW phase (melted Mott phase). In this case, phonon transmission could be strongly coupled to commensurate CDW lattice via Coulomb interaction, which likely induces appearance of hexagonal domains suspended in an interdomain phase, composing the melted Mott phase characterized by a shallow electron pocket. Combining electronic structure, atomic structure, transport properties with Raman scattering, these findings provide a novel dimension in understanding the relationship between electronic correlation, charge order, and phonon dynamics.

Keywords:  two-dimensional materials      charge density wave      Mott state      Raman scattering  
Received:  02 November 2017      Revised:  09 November 2017      Accepted manuscript online: 
PACS:  71.45.Lr (Charge-density-wave systems)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  74.25.nd (Raman and optical spectroscopy)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51771126 and 11774247), the Youth Foundation of Science and Technology Department of Sichuan Province, China (Grant No. 2016JQ0051), and the World First-Class University Construction Funding.

Corresponding Authors:  Ran Ang, Li Lei     E-mail:  rang@scu.edu.cn;lei@scu.edu.cn

Cite this article: 

Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然) Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal 2018 Chin. Phys. B 27 017104

[1] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K M and Lonzarich G G 1998 Nature 394 39
[2] Lefebvre S, Wzietek P, Brown S, Bourbonnais C, Jérome D, Méziére C, Fourmigué M and Batail P 2000 Phys. Rev. Lett. 85 5420
[3] Dagotto E 1994 Rev. Mod. Phys. 66 763
[4] Damascelli A, Hussain Z and Shen Z X 1994 Rev. Mod. Phys. 75 473
[5] Mattheiss L F 1973 Phys. Rev. B 8 3719
[6] Gabovich A M, Voitenko A I and Ausloos M 2002 Phys. Rep. 367 583
[7] Wang H T, Li L J, Ye D S, Cheng X H and Xu Z A 2007 Chin. Phys. B 16 2471
[8] Yang H T, Tao H J and Zhang Z X 1998 Chin. Phys. Lett. 15 123
[9] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[10] Fazekas P and Tosatti E 1979 Philos. Mag. B 39 229
[11] Manzke R, Buslaps T, Pfalzgraf B, Skibowski M and Anderson O 1989 Europhys. Lett. 8 195
[12] Thomson R E, Burk B, Zettl A and Clarke J 1994 Phys. Rev. B 49 16899
[13] Pillo T, Hayoz J, Berger H, Fasel R, Schlapbach L and Aebi P 2000 Phys. Rev. B 62 4277
[14] Scruby C B, Williams P M and Parry G S 1975 Philos. Mag. 31 255
[15] Rossnagel K and Smith N V 2006 Phys. Rev. B 73 073106
[16] Smith N V, Kevan S D and Disalvo F J 1985 J. Phys. C 18 3175
[17] Zwick F, Berger H, Vobornik I, Margaritondo G, Forró L, Beeli C, Onellion M, Panaccione G, Taleb-Ibrahimi A and Grioni M 1998 Phys. Rev. Lett. 81 1058
[18] Spijkerman A, de Boer J L, Meetsma A, Wiegers G A and van Smaalen S 1997 Phys. Rev. B 56 13757
[19] Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kalläne M, Marczynski-Bühlow M, Hennies F, Bauer M, Föhlisch A, Kipp L, Wurth W and Rossnagel K 2010 Phys. Rev. Lett. 105 187401
[20] Eichberger M, Schäfer H, Krumova M, Beyer M, Demsar J, Berger H, Moriena G, Sciani G and Miller R J D 2010 Nature 468 799
[21] Ishizaka K, Kiss T, Yamamoto T, Ishida Y, Saitoh T, Matsunami M, Eguchi R, Ohtsuki T, Kosuge A, Kanai T, Nohara M, Takagi H, Watanabe S and Shin S 2011 Phys. Rev. B 83 081104
[22] Petersen J C, Kaiser S, Dean N, Simoncig A, Liu H Y, Cavalieri A L, Cacho C, Turcu I C E, Springate E, Frassetto F, Poletto L, Dhesi S S, Berger H and Cavalleri A 2011 Phys. Rev. Lett. 107 177402
[23] Sugai S, Murase K, Uchida S and Tanaka S 1981 Physica B+C 105 405
[24] Duffey J R, Kirby R D and Coleman R V 1976 Solid State Commun. 20 617
[25] Pennycook S J and Boatner L A 1988 Nature 336 565
[26] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Yamamoto T and Ikuhara Y 2009 Appl. Phys. Lett. 95 191913
[27] Uchida S and Sugai S 1981 Physica B+C 105 393
[28] He R, Okamoto J, Ye Z P, Ye G H, Anderson H, Dai X, Wu X X, Hu J P, Liu Y, Lu W J, Sun Y P, Pasupathy A N and Tsen A W 2016 Phys. Rev. B 94 201108
[29] Albertini O R, Zhao R, McCann R L, Feng S M, Terrones M, Freericks J K, Robinson J A and Liu A Y 2016 Phys. Rev. B 93 214109
[30] Pillo Th, Hayoz J, Berger H, Grioni M, Schlapbach L and Aebi P 1999 Phys. Rev. Lett. 83 3494
[31] Ang R, Tanaka Y, Ieki E, Nakayama K, Sato T, Li L J, Lu W J, Sun Y P and Takahashi T 2012 Phys. Rev. Lett. 109 176403
[32] Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Berger H, Biermann S, Cornaglia P S, Georges A and Wolf M 2006 Phys. Rev. Lett. 97 067402
[33] Ang R, Miyata Y, Ieki E, Nakayama K, Sato T, Liu Y, Lu W J, Sun Y P and Takahashi T 2013 Phys. Rev. B 88 115145
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[4] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[7] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[8] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[9] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[10] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[11] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[12] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[13] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[14] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[15] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
No Suggested Reading articles found!