|
|
Momentum-space crystal in narrow-line cooling of 87Sr |
Jian-Xin Han(韩建新)1,2, Ben-Quan Lu(卢本全)1, Mo-Juan Yin(尹默娟)1, Ye-Bing Wang(王叶兵)1,2, Qin-Fang Xu(徐琴芳)1, Xiao-Tong Lu(卢晓同)1,2, Hong Chang(常宏)1,2 |
1 Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The discovery of the momentum space crystal based on the alkaline-earth atom 88Sr in narrow-line cooling has paved the way to explore this novel physical phenomenon in other cold atom systems. In this paper, a momentum space crystal based on the fermions 87Sr in narrow-line cooling of transition 1S0-3P1 is demonstrated. We theoretically analyze and compare the formation principle of the narrow-line with that of broad-line cooling, and achieve the momentum space crystal in experiment. Beyond that we present a series of numerical calculations of those important parameters which influence the distribution and size of the momentum space crystal. Correspondingly, we vary the values of these parameters in experiment to observe the momentum space crystal evolution and distribution. The experimental results are in conformity with the results of the theoretically numerical calculations. These results and analyses provide a detailed supplementary study on the formation and evolution of momentum space crystal. In addition, this work could also give a guideline on atomic manipulation by narrow-line cooling.
|
Received: 12 August 2018
Revised: 30 October 2018
Accepted manuscript online:
|
PACS:
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
|
03.65.Sq
|
(Semiclassical theories and applications)
|
|
81.16.Ta
|
(Atom manipulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474282 and 61775220), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100). |
Corresponding Authors:
Hong Chang
E-mail: changhong@ntsc.ac.cn
|
Cite this article:
Jian-Xin Han(韩建新), Ben-Quan Lu(卢本全), Mo-Juan Yin(尹默娟), Ye-Bing Wang(王叶兵), Qin-Fang Xu(徐琴芳), Xiao-Tong Lu(卢晓同), Hong Chang(常宏) Momentum-space crystal in narrow-line cooling of 87Sr 2019 Chin. Phys. B 28 013701
|
[1] |
Courtillot I, Quessada A, Kovacich R P, Zondy J J, Landragin A, Clairon A and Lemonde P 2003 Opt. Lett. 28 468
|
[2] |
Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
|
[3] |
Xu X Y, Loftus T H, Dunn J W, Greene C H, Hall J L, Gallagher A and Ye J 2003 Phys. Rev. Lett. 90 193002
|
[4] |
Maruyama R, Wynar R H, Romalis M V, Andalkar A, Swallows M D, Pearson C E and Fortson E N 2003 Phys. Rev. A 68 011403
|
[5] |
Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T and Takahashi Y 2003 Phys. Rev. Lett. 91 040404
|
[6] |
Stellmer S, Grimm R and Schreck F 2011 Phys. Rev. A 84 043611
|
[7] |
Mickelson P G, Martinez D, Escobar Y N, Yan M, DeSalvo B J and Killian T C 2010 Phys. Rev. A 81 051601
|
[8] |
Ruschewitz F, Peng J, Hinderthür H, Schaffrath N and Ertmer W 1998 Phys. Rev. Lett. 80 3173
|
[9] |
Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
|
[10] |
Strelkin S A, Galyshev A A, Berdasov O I, Gribov A Y, Sutyrin D V, Khabarova K Y, Kolachevsky N N and Slyusarev S N 2015 Phys. Procedia 72 184
|
[11] |
Curtis E A, Oates C W and Hollberg L 2003 J. Opt. Soc. Am. B 20 977
|
[12] |
Loftus T H, Ido T, Ludlow A D, Boyd M M and Ye J 2004 Phys. Rev. Lett. 93 073003
|
[13] |
Norcia M A, Cline J R K, Bartolotta J P, Holl M J and Thompson J K 2018 New J. Phys. 20 023021
|
[14] |
Stellmer S 2013 Degenerate Quantum Gases of Strontium (Ph. D. Dissertation) (Innsbruck: Computer Science and Physics of the University of Innsbruck)
|
[15] |
Katori H, Ido T, Isoya Y and Kuwata-Gonokami M 1999 Phys. Rev. Lett. 82 1116
|
[16] |
Loftus T H, Ido T, Boyd M M, Ludlow A D and Ye J 2004 Phys. Rev. A 70 063413
|
[17] |
Stellmer S, Schreck F and Killian T C 2014 J. Opt. Soc. Am. B 20 1
|
[18] |
Wang Q, Lin B K, Zhao Y, Li Y, Wang S K, Wang M M, Zang E J, Li T C and Fang Z J 2011 Chin. Phys. Lett. 28 033201
|
[19] |
Mukaiyama T, Katori H, Ido T, Li Y and Kuwata-Gonokami M 2003 Phys. Rev. Lett. 90 113002
|
[20] |
Michael J M 2006 Quantum Metrology and Many-Body Physics: Pushing the Frontier of the Optical Lattice Clock (Ph. D. Dissertation) (Colorado: the University of Colorado)
|
[21] |
Berglund M and Wieser M E 2011 Pure Appl. Chem. 83 397
|
[22] |
Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T and Ye J 2006 Science 314 1430
|
[23] |
Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N and Westbrook C I 1989 J. Opt. Soc. Am. B 6 2084
|
[24] |
Phillips W D 1998 Rev. Mod. Phys. 70 721
|
[25] |
Courtillot I, Quessada-Vial A, Brusch A, Kolker D, Rovera G D and Lemonde P 2005 Eur. Phys. J. D 33 161
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|