|
|
Precision frequency measurement of 1S0-3P1 intercombination lines of Sr isotopes |
Liu Hui (刘辉)a b, Gao Feng (高峰)a, Wang Ye-Bing (王叶兵)a, Tian Xiao (田晓)a b, Ren Jie (任洁)a, Lu Ben-Quan (卢本全)a b, Xu Qin-Fang (徐琴芳)a, Xie Yu-Lin (谢玉林)a b, Chang Hong (常宏)a |
a CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600, China; b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report on frequency measurement of the intercombination (5s2)1S0-(5s5p)3P1 transition of the four natural isotopes of strontium, including 88Sr (82.58%), 87Sr (7.0%), 86Sr (9.86%), and 84Sr (0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion (ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8× 10-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator (AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely. The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works.
|
Received: 19 June 2014
Revised: 08 August 2014
Accepted manuscript online:
|
PACS:
|
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
06.30.Ft
|
(Time and frequency)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61127901) and the Key Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02). |
Corresponding Authors:
Chang Hong
E-mail: changhong@ntsc.ac.cn
|
Cite this article:
Liu Hui (刘辉), Gao Feng (高峰), Wang Ye-Bing (王叶兵), Tian Xiao (田晓), Ren Jie (任洁), Lu Ben-Quan (卢本全), Xu Qin-Fang (徐琴芳), Xie Yu-Lin (谢玉林), Chang Hong (常宏) Precision frequency measurement of 1S0-3P1 intercombination lines of Sr isotopes 2015 Chin. Phys. B 24 013201
|
[1] |
Kolachevsky N, Fischer M, Karshenboim S G and Hänsch T W 2004 Phys. Rev. Lett. 92 033003
|
[2] |
Li C H, Benedick A J, Fendel P, Glenday A G, Kärtner F X, Phillips D F, Sasselov D, Szentgyorgyi A and Walsworth R L 2008 Nature 452 610
|
[3] |
Steinmetz T, Wilken T, Hauck C A, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W and Udem T 2008 Science 321 1335
|
[4] |
Hall J L 2006 Rev. Mod. Phys. 78 1279
|
[5] |
Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233
|
[6] |
Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2003 Science 341 1215
|
[7] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[8] |
Bloom B J, Nicholson T L, Williams J L, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[9] |
Bize S, Diddams S A, Tanaka U, Tanner C E, Oskay W H, Drullinger R E, Parker T E, Heavner T P, Jefferts S R, Hollberg L, Itano W M and Bergquist J C 2003 Phys. Rev. Lett. 90 150802
|
[10] |
Keupp J, Douillet A, Mehlstäubler T E, Rehbein N, Rasela E M and Ertmer W 2005 Eur. Phys. J. D 36 289
|
[11] |
Sterr U, Degenhardt C, Stoehr H, Lisdat C, Schnatz H, Helmcke J, Riehle F, Wilpers G, Oates C and Hollberg L 2004 CR Phys. 5 845
|
[12] |
Kraft S, Vogt F, Appel O, Riehle F and Sterr U 2009 Phys. Rev. Lett. 103 130401
|
[13] |
Stellmer S, Tey M K, Huang B, Grimm R and Schreck F 2009 Phys. Rev. Lett. 103 200401
|
[14] |
Poirier M 1988 Phys. Rev. A 38 3484
|
[15] |
Daley A J, Boyd M M, Ye J and Zoller P 2008 Phys. Rev. Lett. 101 170504
|
[16] |
Stellmer S, Pasquiou B, Grimm R and Schreck F 2013 Phys. Rev. Lett. 110 263003
|
[17] |
Katori H, Ido T, Isoya Y and Kuwata-Gonokami M 1999 Phys. Rev. Lett. 82 1116
|
[18] |
Nagel S B, Mickelson P G, Saenz A D, Martinez Y N, Chen Y C, Killian T C, Pellegrini P and Côté R 2005 Phys. Rev. Lett. 94 083004
|
[19] |
Nagel S B 2008 Ultracold Collisions in Atomic Strontium (Ph.D. Dissertation) (Houston: Rice University)
|
[20] |
Tey M K, Stellmer S, Grimm R and Schreck F 2010 Phys. Rev. A 82 011608
|
[21] |
Stellmer S, Grimm R and Schreck F 2013 Phys. Rev. A 87 013611
|
[22] |
Gao F, Liu H, Xu P, Tian X, Wang Y B, Ren J, Wu H B and Chang H 2014 AIP Adv. 4 027118
|
[23] |
Gao F, Liu H, Xu P, Wang Y B, Tian X and Chang H 2014 Acta Phys. Sin. 63 140704 (in Chinese)
|
[24] |
Mitschke F M and Mollenauer L F 1986 Opt. Lett. 11 659
|
[25] |
Rosman K J R and Taylor P D P 1998 J. Phys. Chem. Ref. Data. 27 1275
|
[26] |
Crane J K, Shaw M J and Presta R W 1994 Phys. Rev. A 49 1666
|
[27] |
Hall J L and Bordé C J 1976 Appl. Phys. Lett. 29 788
|
[28] |
Artoni M, Carusotto I and Minardi F 2000 Phys. Rev. A 62 023402
|
[29] |
Ferrari G, Cancio P, Drullinger R, Giusfredi G, Poli N, Prevedelli M, Toninelli C and Tino G M 2003 Phys. Rev. Lett. 91 243002
|
[30] |
Idol A, Brusch A, Kolker D, Rovera G D and Lemonde P 2005 Eur. Phys. J. D 33 161
|
[31] |
Ido T, Loftus T H, Boyd M M, Ludlow A D, Holman K W and Ye J 2005 Phys. Rev. Lett. 94 153001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|