CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Tuning of magnetic properties of aluminium-doped strontium hexaferrite powders |
Xiao-Mei Ma(马小梅), Jie Liu(刘杰), Sheng-Zhi Zhu(朱生志), Hui-Gang Shi(史慧刚) |
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract M-type Al-doped strontium ferrite powders (SrAlxFe2n-xO19, n=5.9) with nominal Al content of x=0-2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray diffraction, shows the presence of purity hexaferrite structure and absence of any secondary phase. The lattice parameters decrease with increasing x. The average grain size of the powders is about 300 nm-400 nm at Al3+ ion content x=0-2.0. The room-temperature hysteresis loops of the powders, measured by using vibrating sample magnetometer, show that the specific saturation magnetization (σs) value continuously decreases while the coercivity (Hc) value increases with increasing x, and Hc reaches to 9759 Oe (1 Oe=79.5775 A/m) at x=2.0. According to the law of approach saturation, Hc value increases with increasing Al3+ ion content, which is attributed to the saturation magnetization (Ms) decreasing more rapidly than the magnetic anisotropy constant (K1) obtained by numerical fitting of the hysteresis loops. The distribution of Al3+ ions in the hexaferrite structure of SrAlxFe2n-xO19 is investigated by using 57Co Mössbauer spectroscopy. The effect of Al3+ doping on static magnetic properties contributes to the improvement of magnetic anisotropy field.
|
Received: 22 June 2016
Revised: 18 August 2016
Accepted manuscript online:
|
PACS:
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Corresponding Authors:
Hui-Gang Shi
E-mail: shihuig@lzu.edu.cn
|
Cite this article:
Xiao-Mei Ma(马小梅), Jie Liu(刘杰), Sheng-Zhi Zhu(朱生志), Hui-Gang Shi(史慧刚) Tuning of magnetic properties of aluminium-doped strontium hexaferrite powders 2016 Chin. Phys. B 25 126102
|
[1] |
Zou H, Li S H, Zhang L Q, Yan S H, Wu H G, Zhang S and Tian M 2011 J. Magn. Magn. Mater. 323 1643
|
[2] |
Nie Y, Harward I, Balin K, Beaubien A and Celinski Z 2010 J. Appl. Phys. 107 073903
|
[3] |
Dehlinger A S, LeBerre M, Canut B, Chatelon J P, Albertini D, Perrot S, Givord D and Rousseau J J 2010 J. Magn. Magn. Mater. 322 3293
|
[4] |
Luo J H, Xu Y and Mao H K 2015 J. Magn. Magn. Mater. 381 365
|
[5] |
Li T T, Li Y, Wu R N, Zhou H, Fang X C, Su S B, Xia A L, Jin C G and Liu X G 2015 J. Magn. Magn. Mater. 393 325
|
[6] |
Qiu J X, Zhang Q G and Gu M Y 2005 J. Appl. Phys. 98 103905
|
[7] |
Meng P Y, Xiong K, Ju K, Li S N and Xu G L 2015 J. Magn. Magn. Mater. 385 407
|
[8] |
Sapoletova N A, Kushnir, S E, Li Y H, An S Y, Seo J W and Hur K H 2015 J. Magn. Magn. Mater. 389 101
|
[9] |
Pawar R A, Desai S S, Tamboli Q Y, Shirsath S E and Paatange S M 2015 J. Magn. Magn. Mater. 378 59
|
[10] |
Alam R S, Moradi M, Rostami M, Nikmannesh H, Moayedi R and Bai Y 2015 J. Magn. Magn. Mater. 381 1
|
[11] |
Chin T S, Hsu S L and Deng M C 1993 J. Magn. Magn. Mater. 120 64
|
[12] |
Lotgering F K 1974 J. Phys & Chem. Solid 35 1633
|
[13] |
Van Uiteit L G 1957 J. Appl. Phys. 28 317
|
[14] |
Pankov V V, Pernet M, Germi P and Mollard P 1993 J. Magn. Magn. Mater. 120 69
|
[15] |
Shirtcliffea N J, Thompson S, O'Keefe E S, Appleton S and Perry C C 2007 Mater. Res. Bull. 42 281
|
[16] |
Wang H Z, Yao B, Xu Y, He Q, Wen G H, Long S W, Fan J, Li G D, Shan L, Liu B, Jiang L N and Gao L L 2012 J. Alloys Compd. 537 43
|
[17] |
Luo H, Rai B K, Mishra S H, Nguyen V V and Liu J P 2012 J. Magn. Magn. Mater. 324 2602
|
[18] |
Kazina P E, Trusovb L A, Zaitsevb D D, Tretyakova Y D and Jansenc M 2008 J. Magn. Magn. Mater. 320 1068
|
[19] |
Awawdeh M, Bsoul I and Mahmood S H 2014 J. Alloys Compd. 585 465
|
[20] |
Ashiq M N, Iqbal M J and Gul I H 2011 J. Magn. Magn. Mater. 323 259
|
[21] |
Choi D H, An S Y, Lee S W, Shim I B and Kim C S 2004 Phys. Stat. Sol. 241 1736
|
[22] |
Chen D, Liu Y L, Li Y X, Yang K and Zhang H W 2013 J. Magn. Magn. Mater. 337-338 65
|
[23] |
Adelskold V 1938 Arkiv Kemi Miner. Geol. A12 1
|
[24] |
Trukhanov A V, Turchenko V O, Bobrikov I A, Trukhanov S V, Kazakevich I S and Balagurov A M 2015 J. Magn. Magn. Mater. 393 253
|
[25] |
Rai B K, Mishra S R, Nguyen V V and Liu J P 2013 J. Alloys Compd. 550 198
|
[26] |
Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T, Wakimoto S, Kakurai K, Taguchi Y and Tokura Y 2010 Phys. Rev. lett. 105 2572
|
[27] |
Li W, Qiao X, Li M, Liu T and Peng H 2013 Mater. Res. Bull. 48 4449
|
[28] |
Shams M H, Rozatian A S H, Yousefi M H, Valíček J and Šepelák V 2016 J. Magn. Magn. Mater. 399 10
|
[29] |
Shannon R D, Prewitt C T and Crystallogr A 1969 Sect. B:Struct. Sci. 25 925
|
[30] |
Katlakunta S, Meena S S, Srinath S, Bououdina M, Sandhya R and Praveena K 2015 Mater. Res. Bull. 63 58
|
[31] |
Kelley P L, Kamzin A S, Romachevsky K E, Hue D T M, Chinh H D, Srikanth H and Phan M H 2015 J. Alloys Compd. 636 323
|
[32] |
Evans B J, Grandjean F, Lilot A P, Vogel R H and Grard A 1987 J. Magn. Magn. Mater. 67 123
|
[33] |
Araújo J H., Soares J M, Ginani M F, Machado F L A and Cunha J B M 2013 J. Magn. Magn. Mater. 343 203
|
[34] |
Naranga S B, Singh C, Bai Y and Hudiara I S 2008 Mater. Chem. Phys. 111 225
|
[35] |
Li Z W, Yang Z, Wei F L, Zhou X Z, Zhao J H and Morrish A H 2000 Phys. Rev. B 62 6530
|
[36] |
Han M G, Ou Y, Chen W B and Deng L J 2009 J. Alloys Compd. 474 18
|
[37] |
Haberey F and Velicescu M, et al. 1974 Proc. Third European Conference on Hard Magnetic Materials, September 17-19, 1974, Amsterdam, Netherlands, p. 70
|
[38] |
Ghasemi A and Morisako A 2008 J. Alloys Compd. 456 485
|
[39] |
Xu Y, Yang G L, Chu D P and Ruzhai H 1990 Phys. Stat. Sol. (b) 157 685
|
[40] |
Gossinger R 1981 Phys. Stat. Sol. (a) 66 665
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|