ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm |
Yi Zhang(张一)1,2,3, Fu-Hui Shao(邵福会)1,2,3, Cheng-Ao Yang(杨成奥)1,2,3, Sheng-Wen Xie(谢圣文)1,2,3, Shu-Shan Huang(黄书山)1,2,3, Ye Yuan(袁野)1,2,3, Jin-Ming Shang(尚金铭)1,2,3, Yu Zhang(张宇)1,2,3, Ying-Qiang Xu(徐应强)1,2,3, Hai-Qiao Ni(倪海桥)1,2,3, Zhi-Chuan Niu(牛智川)1,2,3 |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We report a type-Ⅱ GaSb-based interband cascade laser operating a continuous wave at room temperature. The cascade region of interband cascade laser was designed using the ‘W’ configuration of the active quantum wells and the ‘Carrier Rebalancing’ method in the electron injector. The devices were processed into narrow ridges and mounted epitaxial side down on a copper heat sink. The 25-μm-wide, 3-mm-long ridge without coated facets generated 41.4 mW of continuous wave output power at T=15℃. And a low threshold current density of 267 A/cm2 is achieved. The emission wavelength of the ICL is 3452.3 nm at 0.5 A.
|
Received: 14 August 2018
Revised: 01 September 2018
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
42.60.Pk
|
(Continuous operation)
|
|
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61790580), the National Natural Science Foundation of China (Grant No. 61435012), and the National Basic Research Program of China (Grant No. 2014CB643903). |
Corresponding Authors:
Yu Zhang, Zhi-Chuan Niu
E-mail: zhangyu@semi.ac.cn;zcniu@semi.ac.cn
|
Cite this article:
Yi Zhang(张一), Fu-Hui Shao(邵福会), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Jin-Ming Shang(尚金铭), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm 2018 Chin. Phys. B 27 124207
|
[1] |
Grau M, Lin C, Dier O, Lauer C and Amann M C 2005 Appl. Phys. Lett. 87 241104
|
[2] |
Shterengas L, Belenky G, Kipshidze G and Hosoda T 2008 Appl. Phys. Lett. 92 171111
|
[3] |
Shterengas L, Liang R, Kipshidze G, Hosoda T, Suchalkin S and Belenky G 2013 Appl. Phys. Lett. 103 121108
|
[4] |
Shterengas L, Liang R, Kipshidze G and Hosoda T 2014 Appl. Phys. Lett. 105 161112
|
[5] |
Hosoda T, Wang M, Shterengas L, Kipshidze G and Belenky G 2015 Appl. Phys. Lett. 107 111106
|
[6] |
Bandyopadhyay N, Bai Y, Tsao S, Nida S, Slivken S and Razeghi M 2012 Appl. Phys. Lett. 101 241110
|
[7] |
Bandyopadhyay N, Slivken S, Bai Y and Razeghi M 2012 Appl. Phys. Lett. 100 212104
|
[8] |
Canedy C L, Bewley W W, Lindle J R, Kim C S, Kim M, Vurgaftman I and Meyer J R 2006 Appl. Phys. Lett. 88 161103
|
[9] |
Kim M, Canedy C L, Bewley W W, Kim C S, Lindle J R, Abell J, Vurgaftman I and Meyer J R 2008 Appl. Phys. Lett. 92 191110
|
[10] |
Garimard Q, Nguyenba T, Larrue A, Cerutti L, Rouillard Y, Gauthier O, Teissier R and Vicet A 2014 Proc. SPIE 9134 91341J
|
[11] |
Vurgaftman I, Bewley W W, Merritt C D, Canedy C L, Kim C S, Abell J, Meyer J R and Kim M 2012 Proc. SPIE 8268 82681F
|
[12] |
Bewley W W, Merritt C D, Kim C S, Kim M, Canedy C L, Vurgaftman I, Abell J and Meyer J R 2012 Proc. SPIE 8374 83740H
|
[13] |
Weih R, Kamp M and Hofling S 2013 Appl. Phys. Lett. 102 231123
|
[14] |
Yang R Q and Pei S S 1996 J. Appl. Phys. 79 8197
|
[15] |
Canedy C L, Abell J, Merritt C D, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2014 Proc. SPIE 9002 90021C
|
[16] |
Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Xu Y Q, Wang G W, Ren Z W and Niu Z C 2014 Proc. SPIE 9002 90021C
|
[17] |
Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Vurgaftman I and Meyer J R 2012 Opt. Express 20 20894
|
[18] |
Bauer A, Dallner M, Kamp M, Hofling S, Worschech L and Forchel 2010 Opt. Eng. 49 111117
|
[19] |
Vurgaftman I, Bewley W W, Merritt C D, Canedy C L, Kim C S, Abell J, Meyer J R and Kim M 2012 Proc. SPIE 8268 82681F
|
[20] |
Meyer J R, Hoffman C A, Bartoli F J and Ram-Mohan L R 1995 Appl. Phys. Lett. 67 757
|
[21] |
Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R and Meyer J R 2011 Nat. Commun. 2 585
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|