Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124206    DOI: 10.1088/1674-1056/27/12/124206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic properties of atomic collective decay in cavity quantum electrodynamics

Yu-Feng Han(韩玉峰)1,2, Cheng-Jie Zhu(朱成杰)1, Xian-Shan Huang(黄仙山)2, Ya-Ping Yang(羊亚平)1
1 Key Laboratory of Advanced Micro-Structured Materials of the Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2 School of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243032, China
Abstract  

We theoretically study the collective decay of two atoms trapped in a single mode cavity and describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependent on the phase of atomic radiation and the speeding up of collective decay can be observed in bad cavity regime. For in- or out-phase case, it occurs due to the quantum interference enhancement no matter which atom is excited initially. For π/2 phase, the speeding up of collective decay takes place if the first atom is excited at the beginning. However, it disappears due to the quantum interference cancelation if the second atom is excited. Compared with the in-phase and out-phase cases, we also show that the speeding up of collective decay can be significantly enhanced in strong coupling regime for π/2 phase although one atom is decoupled to the cavity in this condition. The study presented here is helpful to understand the physical mechanism of collective decay in cavity quantum electrodynamics, and provide a useful method to control the collective decay phenomenon via quantum interference effect.

Keywords:  quantum interference      collective decay      cavity quantum electrodynamics  
Received:  14 July 2018      Revised:  20 August 2018      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  37.30.+i (Atoms, molecules, andions incavities)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11774262, 11474003, and 11504003), the National Key Basic Research Special Foundation (Grant No. 2016YFA0302800), the Joint Fund of the National Natural Science Foundation of China (Grant No. U1330203), the Fund from the Shanghai Science and Technology Committee (STCSM), and the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085MA19 and 1608085ME102).

Corresponding Authors:  Cheng-Jie Zhu, Ya-Ping Yang     E-mail:  cjzhu@tongji.edu.cn;yang_yaping@tongji.edu.cn

Cite this article: 

Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平) Dynamic properties of atomic collective decay in cavity quantum electrodynamics 2018 Chin. Phys. B 27 124206

[1] Harris S E 1997 Phys. Today 50 36
[2] Harris S E 1989 Phys. Rev. Lett. 62 1033
[3] Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
[4] Fleischhauer M, Keitel C H, Scully M O, Su C, Ulrich B and Zhu S Y 1992 Phys. Rev. A 46 1468
[5] Yang Y and Zhu S Y 2000 Phys. Rev. A 61 043809
[6] Liu Z Q, Feng T H, Dai Q F, Wu L J, Lan S, Ding C R and Wang H Z 2010 Chin. Phys. B 19 114210
[7] Scully M O and Zubairy M S 1988 Opt. Commun. 66 303
[8] Ansari N A, Gea-Banacloche J and Zubairy M S 1990 Phys. Rev. A 41 5179
[9] Zhu S Y, Chan R C and Lee C P 1995 Phys. Rev. A 52 710
[10] Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 37
[11] Sokhoyan R and Atwater H A 2013 Opt. Express 21 32279
[12] Noda S, Fujita and Asano M T 2007 Nat. Photon. 1 449
[13] Li J, Wan R G and Yao Z H 2016 Chin. Phys. B 25 104204
[14] Russell K J, Liu T L, Cui S and Hu E L 2012 Nat. Photon. 6 459
[15] Qiu L, Zhang K and Li Z Y 2013 Chin. Phys. B 22 094207
[16] Tam F, Goodrich G P, Johnson B R and Halas N J 2007 Nano Lett. 7 496
[17] Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J and Thompson J K 2012 Nature 484 78
[18] Bonifacio R, Schwendimann P and Haake F 1971 Phys. Rev. A 4 302
[19] Gross M and Haroche S 1982 Phys. Rep. 93 301
[20] Lin G D and Yelin S F 2012 Advances in Atomic, Molecular, and Optical Physics (Netherlands: Elsevier) pp. 295-329
[21] Hesham F and Enrica C 2017 Chin. Phys. Lett. 34 114101
[22] Dicke R H 1954 Phys. Rev. 93 99
[23] Men'shikov L I 1999 Phys.-Usp. 42 107
[24] Mlynek J, Abdumalikov A, Eichler C and Wallraff A 2014 Nat. Commun. 5 5186
[25] Jiang Y J, Lü H and Jing H 2018 Chin. Phys. Lett. 35 044205
[26] LUO L F and LING Y S 1986 Chin. Phys. Lett. 3 293
[27] Kästel J and Fleischhauer M 2005 Phys. Rev. A 71 011804
[28] Temnov V V and Woggon U 2005 Phys. Rev. Lett. 95 243602
[29] Martín-Cano D, Martín-Moreno L, García-Vidal F J and Moreno E 2010 Nano Lett. 10 3129
[30] Choquette J, Marzlin K P and Sanders B 2010 Phys. Rev. A 82 023827
[31] Pan J, Sandhu S, Huo Y, Stuhrmann N, Povinelli M J, Harris J S, Fejer M and Fan S 2010 Phys. Rev. B 81 041101
[32] Fleury R and Alú A 2013 Phys. Rev. B 87 201101
[33] Tan R and Huang H 2014 Chin. Phys. Lett. 31 084205
[34] Kalachev A and Kröll S 2006 Phys. Rev. A 74 023814
[35] Chen Y N, Chen S L, Lambert N, Li C M, Chen G Y and Nori F 2013 Phys. Rev. A 88 052320
[36] Agarwal G S and Kapale K T 2006 Phys. Rev. A 73 022315
[37] Wang X and Schirmer S G 2010 arXiv: 1005.2114v2 [quant-ph]
[38] Röhlsberger R, Schlage K, Sahoo B, Couet S and Rffer R 2010 Science 328 1248
[39] Scully M O and Zubairy M S 1997 Quantum optics (Cambridge: Cambridge University Press)
[40] Agarwal G S 2012 Quantum optics (Cambridge: Cambridge University Press)
[41] Zhu C J, Yang Y P and Agarwal G S 2017 Phys. Rev. A 95 063842
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[4] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[5] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[6] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[7] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[8] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[9] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[10] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[11] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[12] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[13] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[14] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[15] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
No Suggested Reading articles found!