Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024202    DOI: 10.1088/1674-1056/27/2/024202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Double-rod metasurface for mid-infrared polarization conversion

Yang Pu(蒲洋)1, Yi Luo(罗意)1, Lu Liu(刘路)1, De He(何德)1, Hongyan Xu(徐洪艳)2, Hongwei Jing(景洪伟)2, Yadong Jiang(蒋亚东)1, Zhijun Liu(刘志军)1
1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China;
2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Abstract  Resonant responses of metasurface enable effective control over the polarization properties of lights. In this paper, we demonstrate a double-rod metasurface for broadband polarization conversion in the mid-infrared region. The metasurface consists of a metallic double-rod array separated from a reflecting ground plane by a film of zinc selenide. By superimposing three localized resonances, cross polarization conversion is achieved over a bandwidth of 16.9 THz around the central frequency at 34.6 THz with conversion efficiency exceeding 70%. The polarization conversion performance is in qualitative agreement with simulation. The surface current distributions and electric field profiles of the resonant modes are discussed to analyze the underlying physical mechanism. Our demonstrated broadband polarization conversion has potential applications in the area of mid-infrared spectroscopy, communication, and sensing.
Keywords:  metasurface      polarization conversion      mid-infrared      broadband  
Received:  26 July 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  95.85.Hp (Infrared (3-10 μm))  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61421002 and 61575036), the Chinese National 1000 Plan for Young Talents, and the Startup Funding from University of Electronic Science and Technology of China.
Corresponding Authors:  Zhijun Liu     E-mail:  liuzhijun@uestc.edu.cn
About author:  42.25.Ja; 78.67.Pt; 95.85.Hp

Cite this article: 

Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军) Double-rod metasurface for mid-infrared polarization conversion 2018 Chin. Phys. B 27 024202

[1] Hu J, Meyer J, Richardson K and Shah L 2013 Opt. Mater. Express 3 1571
[2] Jackson S D 2012 Nat. Photon. 6 423
[3] Yao Y, Hoffman A J and Gmachl C F 2012 Nat. Photon. 6 432
[4] Tidrow M Z, Beck W A, Clark Ⅲ W W, Pollehn H K, Little J W, Dhar N K, Leavitt R P, Kennerly S W, Beekman D W, Goldberg A C and Dyer W R 1999 Proc. SPIE 3629 100
[5] Chen G, Haddadi A, Hoang A-M, Chevallier R and Razeghi M 2015 Opt. Lett. 40 45
[6] Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 6526
[7] Han D, Lee K, Jo H, Song Y, Kim M and Ahn J 2016 Opt. Express 24 21276
[8] Born M and Wolf E 1999 Principles of Optics (Cambridge:Cambridge University Press)
[9] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[10] Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807
[11] Li T, Wang S M, Cao J X, Liu H and Zhu S N 2010 Appl. Phys. Lett. 97 261113
[12] Feng M, Wang J, Ma H, Mo W, Ye H and Qu S 2013 J. Appl. Phys. 114 074508
[13] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
[14] Shi H Y, Li J X, Zhang A X, Wang J F and Xu Z 2014 Chin. Phys. B 23 118101
[15] Wu X, Meng Y, Wang L, Tian J, Dai S and Wen W 2016 Appl. Phys. Lett. 108 183502
[16] Huang Y, Yang L, Li J, Wang Y and Wen G 2016 Appl. Phys. Lett. 109 054101
[17] Wu J L, Lin B Q and Da X Y 2016 Chin. Phys. B 25 088101
[18] Sun H, Gu C, Chen X, Li Z, Liu L and Martín F 2017 J. Appl. Phys. 121 174902
[19] Novotny L 2007 Phys. Rev. Lett. 98 266802
[20] Luo Y, Ying X, Pu Y, Jiang Y, Xu J and Liu Z 2016 Appl. Phys. Lett. 108 231103
[21] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y and Zhang H 2014 Opt. Express 22 29143
[22] Ding J, Arigong B, Ren H, Shao J, Zhou M, Lin Y and Zhang H 2015 Plasmonics 10 351
[23] Cheng H, Chen S, Yu P, Li J, Xie B, Li Z and Tian J 2013 Appl. Phys. Lett. 103 223102
[24] Yang C, Luo Y, Guo J, Pu Y, He D, Jiang Y, Xu J and Liu Z 2016 Opt. Express 24 16913
[25] Chen M, Sun W, Cai J, Chang L and Xiao X 2017 Plasmonics 12 699
[26] Lévesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R and Pelouard J-L 2014 Appl. Phys. Lett. 104 111105
[27] Zhang Z, Luo J, Song M and Yu H 2015 Appl. Phys. Lett. 107 241904
[28] Mousavi S H, Khanikaev A B, Neuner B, Fozdar D Y, Corrigan T D, Kolb P W, Drew H D, Phaneuf R J, Alú A and Shvets G 2011 Opt. Express 19 22142
[29] Ye Z, Zhang S, Wang Y, Park Y-S, Zentgraf T, Bartal G, Yin X and Zhang X 2012 Phys. Rev. B 86 155148
[30] Omaghali N E J, Tkachenko V, Andreone A and Abbate G 2014 Sensors 14 272
[31] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W Jr and Ward C A 1983 Appl. Opt. 22 1099
[32] Ahmed S and Khawaja E E 1984 Thin Solid Films 112 L1
[33] Yang J and Zhang J 2011 Plasmonics 6 251
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[4] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[8] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[13] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[14] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[15] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
No Suggested Reading articles found!