ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Double-rod metasurface for mid-infrared polarization conversion |
Yang Pu(蒲洋)1, Yi Luo(罗意)1, Lu Liu(刘路)1, De He(何德)1, Hongyan Xu(徐洪艳)2, Hongwei Jing(景洪伟)2, Yadong Jiang(蒋亚东)1, Zhijun Liu(刘志军)1 |
1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China; 2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China |
|
|
Abstract Resonant responses of metasurface enable effective control over the polarization properties of lights. In this paper, we demonstrate a double-rod metasurface for broadband polarization conversion in the mid-infrared region. The metasurface consists of a metallic double-rod array separated from a reflecting ground plane by a film of zinc selenide. By superimposing three localized resonances, cross polarization conversion is achieved over a bandwidth of 16.9 THz around the central frequency at 34.6 THz with conversion efficiency exceeding 70%. The polarization conversion performance is in qualitative agreement with simulation. The surface current distributions and electric field profiles of the resonant modes are discussed to analyze the underlying physical mechanism. Our demonstrated broadband polarization conversion has potential applications in the area of mid-infrared spectroscopy, communication, and sensing.
|
Received: 26 July 2017
Revised: 16 October 2017
Accepted manuscript online:
|
PACS:
|
42.25.Ja
|
(Polarization)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
95.85.Hp
|
(Infrared (3-10 μm))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61421002 and 61575036), the Chinese National 1000 Plan for Young Talents, and the Startup Funding from University of Electronic Science and Technology of China. |
Corresponding Authors:
Zhijun Liu
E-mail: liuzhijun@uestc.edu.cn
|
About author: 42.25.Ja; 78.67.Pt; 95.85.Hp |
Cite this article:
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军) Double-rod metasurface for mid-infrared polarization conversion 2018 Chin. Phys. B 27 024202
|
[1] |
Hu J, Meyer J, Richardson K and Shah L 2013 Opt. Mater. Express 3 1571
|
[2] |
Jackson S D 2012 Nat. Photon. 6 423
|
[3] |
Yao Y, Hoffman A J and Gmachl C F 2012 Nat. Photon. 6 432
|
[4] |
Tidrow M Z, Beck W A, Clark Ⅲ W W, Pollehn H K, Little J W, Dhar N K, Leavitt R P, Kennerly S W, Beekman D W, Goldberg A C and Dyer W R 1999 Proc. SPIE 3629 100
|
[5] |
Chen G, Haddadi A, Hoang A-M, Chevallier R and Razeghi M 2015 Opt. Lett. 40 45
|
[6] |
Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 6526
|
[7] |
Han D, Lee K, Jo H, Song Y, Kim M and Ahn J 2016 Opt. Express 24 21276
|
[8] |
Born M and Wolf E 1999 Principles of Optics (Cambridge:Cambridge University Press)
|
[9] |
Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
|
[10] |
Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807
|
[11] |
Li T, Wang S M, Cao J X, Liu H and Zhu S N 2010 Appl. Phys. Lett. 97 261113
|
[12] |
Feng M, Wang J, Ma H, Mo W, Ye H and Qu S 2013 J. Appl. Phys. 114 074508
|
[13] |
Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
|
[14] |
Shi H Y, Li J X, Zhang A X, Wang J F and Xu Z 2014 Chin. Phys. B 23 118101
|
[15] |
Wu X, Meng Y, Wang L, Tian J, Dai S and Wen W 2016 Appl. Phys. Lett. 108 183502
|
[16] |
Huang Y, Yang L, Li J, Wang Y and Wen G 2016 Appl. Phys. Lett. 109 054101
|
[17] |
Wu J L, Lin B Q and Da X Y 2016 Chin. Phys. B 25 088101
|
[18] |
Sun H, Gu C, Chen X, Li Z, Liu L and Martín F 2017 J. Appl. Phys. 121 174902
|
[19] |
Novotny L 2007 Phys. Rev. Lett. 98 266802
|
[20] |
Luo Y, Ying X, Pu Y, Jiang Y, Xu J and Liu Z 2016 Appl. Phys. Lett. 108 231103
|
[21] |
Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y and Zhang H 2014 Opt. Express 22 29143
|
[22] |
Ding J, Arigong B, Ren H, Shao J, Zhou M, Lin Y and Zhang H 2015 Plasmonics 10 351
|
[23] |
Cheng H, Chen S, Yu P, Li J, Xie B, Li Z and Tian J 2013 Appl. Phys. Lett. 103 223102
|
[24] |
Yang C, Luo Y, Guo J, Pu Y, He D, Jiang Y, Xu J and Liu Z 2016 Opt. Express 24 16913
|
[25] |
Chen M, Sun W, Cai J, Chang L and Xiao X 2017 Plasmonics 12 699
|
[26] |
Lévesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R and Pelouard J-L 2014 Appl. Phys. Lett. 104 111105
|
[27] |
Zhang Z, Luo J, Song M and Yu H 2015 Appl. Phys. Lett. 107 241904
|
[28] |
Mousavi S H, Khanikaev A B, Neuner B, Fozdar D Y, Corrigan T D, Kolb P W, Drew H D, Phaneuf R J, Alú A and Shvets G 2011 Opt. Express 19 22142
|
[29] |
Ye Z, Zhang S, Wang Y, Park Y-S, Zentgraf T, Bartal G, Yin X and Zhang X 2012 Phys. Rev. B 86 155148
|
[30] |
Omaghali N E J, Tkachenko V, Andreone A and Abbate G 2014 Sensors 14 272
|
[31] |
Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W Jr and Ward C A 1983 Appl. Opt. 22 1099
|
[32] |
Ahmed S and Khawaja E E 1984 Thin Solid Films 112 L1
|
[33] |
Yang J and Zhang J 2011 Plasmonics 6 251
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|