ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers |
Rui-Rui Zhao(赵睿睿)1,2, Ding Wang(王丁)1, Yu Zhao(赵钰)1,2, Yu-Xin Leng(冷雨欣)1, Ru-Xin Li(李儒新)1 |
1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We numerically study the self-compression of the optical pulses centered at 1.8-μm in a hollow-core fiber (HCF) filled with argon. It is found that the pulse can be self-compressed to 2 optical cycles when the input pulse energy is 0.2-mJ and the gas pressure is 500-mbar (1 bar=105 Pa). Inducing a proper positive chirp into the input pulse can lead to a shorter temporal duration after self-compression. These results will benefit the generation of energetic few-cycle mid-infrared pulses.
|
Received: 08 April 2017
Revised: 25 May 2017
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475169, 61521093, and 11127901), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16), and the International Science and Technology Cooperation Program of China (Grant No. 2016YFE0119300). |
Corresponding Authors:
Yu-Xin Leng
E-mail: lengyuxin@mail.siom.ac.cn
|
Cite this article:
Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新) Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers 2017 Chin. Phys. B 26 104206
|
[1] |
Zhou J, Peatross J, Murnane M M, Kapteyn H C and Christov I P 1996 Phys. Rev. Lett. 76 752
|
[2] |
Scrinzi A, Ivanov M Yu, Kienberger R and Villeneuve D M 2006 J. Phys. B 39 1
|
[3] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[4] |
Zewail A H 1988 Science 242 1645
|
[5] |
Suzuki T, Minemoto S, Kanai T and Sakai H 2004 Phys. Rev. Lett. 92 133005
|
[6] |
Liu Y, Liu X, Deng Y, Wu C, Jiang H and Gong Q 2011 Phys. Rev. Lett. 106 073004
|
[7] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[8] |
Sheehy B, Martin J D D, DiMauro L F, Agostini P, Schafer K J, Gaarde M B and Kulander K C 1999 Phys. Rev. Lett. 83 5270
|
[9] |
Yakovlev V S, Ivanov M and Krausz F 2007 Opt. Express 15 15351
|
[10] |
Vozzi C, Manzoni C, Calegari F, Benedetti E, Sansone G, Cerullo G, Nisoli M, Silvestri S De and Stagira S 2008 J. Opt. Soc. Am. B 25 B112
|
[11] |
Kaneshima K, Takeuchi K, Ishii N and Itatani J 2016 High Power Laser Science and Engineering 4 17
|
[12] |
Li C, Wang D, Song L, Liu J, Liu P, Xu C, Leng Y, Li R and Xu Z 2011 Opt. Express 19 6783
|
[13] |
Shen Y R 1984 Principles of nonlinear optics (New York:Wiley-Interscience) p. 575
|
[14] |
Gallmann L, Pfeifer T, Nagel P M, Abel M J, Neumark D M and Leone S R 2007 Appl. Phys. B 86 561
|
[15] |
Kosareva O G, Panov N A, Uryupina D S, Kurilova M V, Mazhorova A V, Savel'ev A B, Volkov R V, Kandidov V P and Chin S L 2008 Appl. Phys. B 91 35
|
[16] |
Hauri C P, Lopez-Martens R B, Blaga C I, et al. 2007 Opt. Lett. 32 868
|
[17] |
Mücke O D, Ališauskas S, Verhoef A J, et al. 2009 Opt. Lett. 34 2498
|
[18] |
Kolesik M and Moloney J V 2004 Phys. Rev. E 70 036604
|
[19] |
Marcatili E A and Schmeltzer R A 1964 Bell Syst. Tech. J. 43 1783
|
[20] |
Perelomov A M, Popov V S and Terent'ev M V 1966 Sov. Phys.-JETP 23 924
|
[21] |
Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys.-JETP 64 1191
|
[22] |
Vozzi C, Nisoli M, Sansone G, Stagira S and Silvestri De S 2005 Appl. Phys. B 80 285
|
[23] |
Nagy T, Pervak V and Simon P 2011 Opt. Lett. 36 4422
|
[24] |
Schmidt B E, Shiner A D, Lassonde P, Kieffer J C, Corkum P B, Villeneuve D M and Légaré F 2011 Opt. Express 19 6858
|
[25] |
Champeaux S and Bergé L 2003 Phys. Rev. E 68 066603
|
[26] |
Schenkel B, Biegert J, Keller U, Vozzi C, Nisoli M, Sansone G, Stagira S, Silvestri De S and Svelto O 2003 Opt. Lett. 28 1987
|
[27] |
Schmidt B E, Béjot P, Giguére M, et al. 2010 Appl. Phys. Lett. 92 121109
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|