Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128103    DOI: 10.1088/1674-1056/27/12/128103
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

High-throughput design of functional materials using materials genome approach

Kesong Yang(杨可松)1,2
1 Department of NanoEngineering, University of California San Diego, La Jolla, California 92093-0448, USA;
2 Center for Memory and Recording Research, University of California San Diego, La Jolla, California 92093-401, USA
Abstract  

High-throughput computational materials design provides one efficient solution to accelerate the discovery and development of functional materials. Its core concept is to build a large quantum materials repository and to search for target materials with desired properties via appropriate materials descriptors in a high-throughput fashion, which shares the same idea with the materials genome approach. This article reviews recent progress of discovering and developing new functional materials using high-throughput computational materials design approach. Emphasis is placed on the rational design of high-throughput screening procedure and the development of appropriate materials descriptors, concentrating on the electronic and magnetic properties of functional materials for various types of industrial applications in nanoelectronics.

Keywords:  high-throughput      first-principles      materials genome      functional materials  
Received:  23 July 2018      Revised:  18 September 2018      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  71.15.-m (Methods of electronic structure calculations)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  73.20.-r (Electron states at surfaces and interfaces)  
Corresponding Authors:  Kesong Yang     E-mail:  kesong@ucsd.edu

Cite this article: 

Kesong Yang(杨可松) High-throughput design of functional materials using materials genome approach 2018 Chin. Phys. B 27 128103

[1] 1979 Materials Science in Energy Technology (Elsevier Inc.)
[2] Kalil T and Wadia C 2011 Tech. Rep. June (National Science and Technology Council)
[3] Boussie T R, Diamond G M, Goh C, Hall K A, LaPointe A M, Leclerc M, Lund C, Murphy V, Shoemaker J A W, Tracht U, Turner H, Zhang J, Uno T, Rosen R K and Stevens J C 2003 J. Am. Chem. Soc. 125 4306
[4] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I and Norskov J K 2006 Nat. Mater. 5 909
[5] Ceder G 2010 MRS Bull. 35 693
[6] Derenzo S, Bizarri G, Borade R, Bourret-Courchesne E, Boutchko R, Canning A, Chaudhry A, Eagleman Y, Gundiah G, Hanrahan S, Janecek M and Weber M 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 247
[7] Wang S D, Wang Z, Setyawan W, Mingo N and Curtarolo S 2011 Phys. Rev. X 1 021012
[8] Armiento R, Kozinsky B, Fornari M and Ceder G 2011 Phys. Rev. B 84 014103
[9] Yang K, Setyawan W, Wang S, Buongiorno Nardelli M and Curtarolo S 2012 Nat. Mater. 11 614
[10] Curtarolo S, Hart G L W, Nardelli M B, Mingo N, Sanvito S and Levy O 2013 Nat. Mater. 12 191
[11] Hautier G, Miglio A, Ceder G, Rignanese G M and Gonze X 2013 Nat. Commun. 4 2292
[12] Armiento R, Kozinsky B, Hautier G, Fornari M and Ceder G 2014 Phys. Rev. B 89 134103
[13] Gautier R, Zhang X, Hu L, Yu L, Lin Y, Sunde T O, Chon D, Poeppelmeier K R and Zunger A 2015 Nat. Chem. 7 308
[14] Yang K, Nazir S, Behtash M and Cheng J 2016 Sci. Rep. 6 34667
[15] Cheng J and Yang K 2018 J. Mater. Chem. C 6 6680
[16] Filip M R and Giustino F 2016 J. Phys. Chem. C 120 166
[17] Wang Z, Chu I H, Zhou F and Ong S P 2016 Chem. Mater. 28 4024
[18] Gomez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel T D, Duvenaud D, Maclaurin D, Blood-Forsythe M A, Chae H S, Einzinger M, Ha D G, Wu T, Markopoulos G, Jeon S, Kang H, Miyazaki H, Numata M, Kim S, Huang W, Hong S I, Baldo M, Adams R P and Aspuru-Guzik A 2016 Nat. Mater. 15 1120
[19] Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M and Curtarolo S 2017 Sci. Adv. 3 e1602241
[20] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R H, Nelson L J, Hart G L W, Sanvito S, Buongiorno-Nardelli M, Mingo N and Levy O 2012 Comput. Mater. Sci. 58 227
[21] Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 JOM 65 1501
[22] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[23] Landis D D, Hummelshoj J S, Nestorov S, Greeley J, Dulak M, Bligaard T, Norskov J K and Jacobsen K W 2012 Comput. Sci. Eng. 14 51
[24] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput. Mater. Sci. 68 314
[25] Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G and Persson K A 2015 Comput. Mater. Sci. 97 209
[26] Hjorth Larsen A, Jorgen Mortensen J, Blomqvist J, Castelli I E, Christensen R, Dulak M, Friis J, Groves M N, Hammer B, Hargus C, Hermes E D, Jennings P C, Bjerre Jensen P, Kermode J, Kitchin J R, Leonhard Kolsbjerg E, Kubal J, Kaasbjerg K, Lysgaard S, Bergmann Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiotz J, Schutt O, Strange M, Thygesen K S, Vegge T, Vilhelmsen L, Walter M, Zeng Z and Jacobsen K W 2017 J. Phys.: Condens. Matter 29 273002
[27] Setyawan W and Curtarolo S 2010 Comput. Mater. Sci. 49 299
[28] Yang X, Wang Z, Zhao X, Song J, Zhang M and Liu H 2018 Comput. Mater. Sci. 146 319
[29] Cheng J, Luo J and Yang K 2018 Comput. Mater. Sci. 155 92
[30] Jain A, Hautier G, Moore C J, Ping Ong S, Fischer C C, Mueller T, Persson K A and Ceder G 2011 Comput. Mater. Sci. 50 2295
[31] Bell L E 2008 Science 321 1457
[32] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
[33] Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G and Ren Z 2008 Nano Lett. 8 4670
[34] Wang X W, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z, Yang J, Muto A J, Tang M Y, Klatsky J, Song S, Dresselhaus M S, Chen G and Ren Z F 2008 Appl. Phys. Lett. 93 193121
[35] Xie W, Tang X, Yan Y, Zhang Q and Tritt T M 2009 Appl. Phys. Lett. 94 102111
[36] Madsen G K 2006 J. Am. Chem. Soc. 128 12140
[37] Bergerhoff G and Brown I D 197 International Union of Crystallography 77
[38] Moore J E 2010 Nature 464 194
[39] Moore J 2009 Nat. Phys. 5 378
[40] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[41] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[42] Lin H, Wray L A, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546
[43] Chadov S, Qi X, Kubler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
[44] Behtash M, Joo P H, Nazir S and Yang K 2015 J. Appl. Phys. 117 175101
[45] Xu X, Bullock J, Schelhas L T, Stutz E Z, Fonseca J J, Hettick M, Pool V L, Tai K F, Toney M F, Fang X, Javey A, Wong L H and Ager J W 2016 Nano Lett. 16 1925
[46] Ohtomo A and Hwang H Y 2004 Nature 427 423
[47] Chakhalian J, Millis A J and Rondinelli J 2012 Nat. Mater. 11 92
[48] Mannhart J and Schlom D G 2010 Science 327 1607
[49] Schlom D G and Mannhart J 2011 Nat. Mater. 10 168
[50] Liu Z Q, Li C J, Lü W M, Huang X H, Huang Z, Zeng S W, Qiu X P, Huang L S, Annadi A, Chen J S, Coey J M D, Venkatesan T and Ariando 2013 Phys. Rev. X 3 021010
[51] Yu L and Zunger A 2014 Nat. Commun. 5 5118
[52] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[53] Pentcheva R and Pickett W 2009 Phys. Rev. Lett. 102 107602
[54] Behtash M, Nazir S, Wang Y and Yang K 2016 Phys. Chem. Chem. Phys. 18 6831
[55] Willmott P R, Pauli S A, Herger R, Schlepütz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C and Yacoby Y 2007 Phys. Rev. Lett. 99 155502
[56] Eckstein J N 2007 Nat. Mater. 6 473
[57] Annadi A, Putra A, Liu Z Q, Wang X, Gopinadhan K, Huang Z, Dhar S, Venkatesan T and Ariando 2012 Phys. Rev. B 86 085450
[58] Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marré D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Granozio F M 2010 Appl. Phys. Lett. 97 152111
[59] Li C, Liu Z, Lu W, Wang X R, Annadi A, Huang Z, Zeng S, Ariando and Venkatesan T 2015 Sci. Rep. 5 13314
[60] Li C, Xu Q, Wen Z, Zhang S, Li A and Wu D 2013 Appl. Phys. Lett. 103 201602
[61] Li D F, Wang Y and Dai J Y 2011 Appl. Phys. Lett. 98 122108
[62] Wang Y, Tang W, Cheng J, Nazir S and Yang K 2016 Phys. Chem. Chem. Phys. 18 31924
[63] Wang Y, Tang W, Cheng J, Behtash M and Yang K 2016 ACS Appl. Mater. Interfaces 8 13659
[64] Nazir S, Cheng J and Yang K 2016 ACS Appl. Mater. Interfaces 8 390
[65] Nazir S, Behtash M, Cheng J, Luo J and Yang K 2016 Phys. Chem. Chem. Phys. 18 2379
[66] Nazir S, Bernal C and Yang K 2015 ACS Appl. Mater. Interfaces 7 5305
[67] Nazir S, Behtash M and Yang K 2015 J. Appl. Phys. 117 115305
[68] Nazir S, Behtash M and Yang K 2015 RSC Adv. 5 15682
[69] Nazir S and Yang K 2014 ACS Appl. Mater. Interfaces 6 22351
[70] Nazir S, Behtash M and Yang K 2014 Appl. Phys. Lett. 105 141602
[71] Stemmer S and James Allen S 2014 Ann. Rev. Mater. Res. 44 151
[72] Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H and Kawasaki M 2007 Science 315 1388
[73] Tampo H, Shibata H, Maejima K, Yamada A, Matsubara K, Fons P, Kashiwaya S, Niki S, Chiba Y, Wakamatsu T and Kanie H 2008 Appl. Phys. Lett. 93 202104
[74] Chen Y, Trier F, Kasama T, Christensen D V, Bovet N, Balogh Z I, Li H, Thyden K T, Zhang W, Yazdi S, Norby P, Pryds N and Linderoth S 2015 Nano Lett. 15 1849
[75] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[76] Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088
[77] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591
[78] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[79] Zhou H, Chen Q, Li G, Luo S, Song T-b, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[80] Livraghi S, Paganini M C, Giamello E, Selloni A, Di Valentin C and Pacchioni G 2006 J. Am. Chem. Soc. 128 15666
[81] Li X, Bi D, Yi C, Décoppet J D, Luo J, Zakeeruddin S M, Hagfeldt A and Grätzel M 2016 Science aaf8060
[82] Zhao X G, Yang D, Sun Y, Li T, Zhang L, Yu L and Zunger A 2017 J. Am. Chem. Soc. 139 6718
[83] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H and Zhang L 2017 J. Am. Chem. Soc. 139 2630
[84] Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F and Sanvito S 2015 Nat. Commun. 6 7026
[85] Filippetti A, Delugas P and Mattoni A 2014 J. Phys. Chem. C 118 24843
[86] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M and De Angelis F 2013 J. Phys. Chem. C 117 13902
[87] Jain A, Voznyy O and Sargent E H 2017 J. Phys. Chem. C 121 7183
[88] Uheda K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T and Yamamoto H 2006 Electrochem. Solid-State Lett. 9 H22
[89] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[90] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[91] Dreuw A and Head-Gordon M 2005 Chem. Rev. 105 4009
[92] Gritsenko O and Baerends E J 2004 J. Chem. Phys. 121 655
[93] Hirosawa S, Nishino M and Miyashita S 2017 Adv. Nat. Sci: Nanosci. Nanotechnol. 8 013002
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!