Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124203    DOI: 10.1088/1674-1056/27/12/124203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarization-based range-gated imaging in birefringent medium:Effect of size parameter

Heng Tian(田恒)1,2, Jing-Ping Zhu(朱京平)1, Shu-Wen Tan(谭树文)1, Jing-Jing Tian(田晶晶)2,3, Yun-Yao Zhang(张云尧)1, Xun Hou(侯洵)1
1 Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049 China;
2 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000 China;
3 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049 China
Abstract  

We have investigated the effect of size parameter of the scatterer on the image quality obtained with polarization-based range-gated imaging in birefringent turbid medium. Both linearly and circularly polarized light were utilized for imaging. The simulated results indicate that the improvement of visibility is more pronounced using circularly polarized light for the birefringent medium composed of smaller-sized scatterers at lower values of optical thickness and the birefringent medium comprising larger-sized scatterers. In contrast, linearly polarized light provides better image quality for the birefringent medium composed of smaller-sized scatterers at larger values of optical thickness. The evolution of the polarization characteristics of backscattered light and target light under the conditions mentioned above was measured to account for these numerical results.

Keywords:  polarization      Monte Carlo simulation      birefringence      scattering  
Received:  26 May 2018      Revised:  22 August 2018      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  05.10.Ln (Monte Carlo methods)  
  42.25.Lc (Birefringence)  
  42.68.Mj (Scattering, polarization)  
Fund: 

Project supported by China Postdoctoral Science Foundation (Grant No. 2016M592788) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM6008).

Corresponding Authors:  Jing-Ping Zhu, Jing-Jing Tian     E-mail:  jpzhu@xjtu.edu.cn;tianjingjing15@163.com

Cite this article: 

Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵) Polarization-based range-gated imaging in birefringent medium:Effect of size parameter 2018 Chin. Phys. B 27 124203

[1] Zheng Y P, Si J H, Tan W J, Liu X J, Tong J Y and Hou X 2017 Chin. Phys. Lett. 34 104204
[2] Schmitt J M 1999 IEEE J. Sel. Top. Quantum Electron. 5 1205
[3] Tromberg B J, Svaas, L O, Tsay T T and Haskell R C 1993 Appl. Opt. 32 607
[4] Hu H F, Zhao L, Li X B, Wang H and Liu T G 2018 IEEE Photon. J. 10 6900309
[5] Wu R H, Suo J L, Dai F, Zhang Y D and Dai Q H 2016 Opt. Lett. 41 3948
[6] Gu Y L, Carrizo C, Gilerson A A, Brady P C, Cummings M E, Twardowski M S, Sullivan J M, Ibrahim A I and Kattawar G K 2016 Appl. Opt. 55 626
[7] Shao H R, He Y H, Li W and Ma H 2006 Appl. Opt. 45 4491
[8] Han P L, Liu F, Yang K, Li J J and Shao X P 2017 Appl. Opt. 56 6631
[9] Tian H, Zhu J P, Zhang Y Y, Guan J G and Hou X 2016 Acta Phys. Sin. 65 084201 (in Chinese)
[10] Shen F, Zhang B M, Guo K, Yin Z P and Guo Z Y 2018 IEEE Photon. J. 10 3900212
[11] Zhi D D, Li J J, Gao D Y, Zhai W C, Huang X H and Zheng X B 2017 Chin. Phys. B 26 124201
[12] Ahmad M, Alali S, Kim A, Wood M F G, Ikram M and Vitkin I A 2011 Biomed. Opt. Express 2 3248
[13] Hielscher A H, Mourant J R and Bigio I J 1997 Appl. Opt. 36 125
[14] Ghosh N, Patel H S and Gupta P K 2003 Opt. Express 11 2198
[15] Ni X H and Alfano R R 2004 Opt. Lett. 29 2773
[16] Nothdurft R and Yao G 2005 Opt. Express 13 4185
[17] Cochenour B, Mullen L and Muth J 2010 Opt. Lett. 35 2088
[18] Ghosh N, Wood M F G and Vitkin I A 2009 J. Appl. Phys. 105 102023
[19] Wang X D and Wang L H V 2001 Opt. Express 9 254
[20] Wang X D and Wang L H V 2002 J. Biomed. Opt. 7 279
[21] Otsuki S 2016 Appl. Opt. 55 5652
[22] Baravian C, Dillet J M and Decruppe J P 2007 Phys. Rev. E 75 032501
[23] Alali S, Wang Y T and Vitkin I A 2012 Biomed. Opt. Express 3 3250
[24] Guan J G and Zhu J P 2013 Opt. Express 21 14152
[25] Guan J G, Zhu J P and Tian H 2015 Chin. Phys. Lett. 32 074201
[26] Tian H, Zhu J P, Tan S W, Zhang Y Y and Hou X 2017 AIP Adv. 7 95310
[27] Tuchin V V 2016 J. Biomed. Opt. 21 71114
[28] Bohren C F and Huffman D R 1983 Absorption Scattering Light By Small Particles (New York: John Wiley Sons) p. 112
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[9] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[10] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[11] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[12] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[13] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[14] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[15] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
No Suggested Reading articles found!