Special Issue:
SPECIAL TOPIC — Photodetector: Materials, physics, and applications
|
SPECIAL TOPIC—Photodetector: materials, physics, and applications |
Prev
Next
|
|
|
Physical manipulation of ultrathin-film optical interference for super absorption and two-dimensional heterojunction photoconversion |
Guo-Yang Cao(曹国洋)1,2, Cheng Zhang(张程)1,2, Shao-Long Wu(吴绍龙)1,2, Dong Ma(马冬)3, Xiao-Feng Li(李孝峰)1,2 |
1 School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University, Suzhou 215006, China;
2 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Laboratory of Modern Optical Technologies of the Education Ministry of China, Soochow University, Suzhou 215006, China;
3 School of Rail Transportation, Soochow University, Suzhou 215131, China |
|
|
Abstract Ultrathin optical interference in a system composed of absorbing material and metal reflector has attracted extensive attention due to its potential application in realizing highly efficient optical absorption by using extremely thin semiconductor material. In this paper, we study the physics behind the high absorption of ultrathin film from the viewpoint of destructive interference and admittance matching, particularly addressing the phase evolution by light propagation and interface reflection. The physical manipulations of the ultrathin interference effect by controlling the substrate material and semiconductor material/thickness are examined. We introduce typical two-dimensional materials–i.e., MoS2 and WSe2–as the absorbing layer with thickness below 10 nm, which exhibits~90% absorption in a large range of incident angle (0°~70°). According to the ultrathin interference mechanism, we propose the ultrathin (<20 nm) MoS2/WSe2 heterojunction for photovoltaic application and carefully examine the detailed optoelectronic responses by coupled multiphysics simulation. By comparing the same cells on SiO2 substrate, both the short-circuit current density (up to 20 mA/cm2) and the photoelectric conversion efficiency (up to 9.5%) are found to be increased by~200%.
|
Received: 13 April 2018
Revised: 12 September 2018
Accepted manuscript online:
|
PACS:
|
42.25.Hz
|
(Interference)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675142 and 61875143), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140359), the Natural Science Research Project of the Higher Educational Institutions of Jiangsu Province, China (Grant No. 17KJA480004), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX17_2027), and the Priority Academic Program Development of the Higher Educational Institutions of Jiangsu Province, China. |
Corresponding Authors:
Dong Ma, Xiao-Feng Li
E-mail: madong@suda.edu.cn;xfli@suda.edu.cn
|
Cite this article:
Guo-Yang Cao(曹国洋), Cheng Zhang(张程), Shao-Long Wu(吴绍龙), Dong Ma(马冬), Xiao-Feng Li(李孝峰) Physical manipulation of ultrathin-film optical interference for super absorption and two-dimensional heterojunction photoconversion 2018 Chin. Phys. B 27 124202
|
[1] |
Piper J R and Fan S 2016 ACS Photon. 3 571
|
[2] |
Pala R A, White J, Barnard E, Liu J and Brongersma M L 2009 Adv. Mater. 21 3504
|
[3] |
Hasobe T, Fukuzumi S and Kamat P V 2006 J. Phys. Chem. B 110 25477
|
[4] |
Lebedev N, Trammell S A, Dressick W, Kedziora G S, Griva I and Schnur J M 2011 Photochem. Photobiol. 87 1024
|
[5] |
Yeh D M, Huang C F, Chen C Y, Lu Y C and Yang C C 2008 Nanotechnol. 19 345201
|
[6] |
Sun G, Khurgin J B and Soref R A 2008 J. Opt. Soc. Am. B 25 1748
|
[7] |
Kano H and Kawata S 1994 Appl. Opt. 33 5166
|
[8] |
Rensberg J, Zhou Y, Richter S, Wan C, Zhang S, Schöppe P, SchmidtGrund R, Ramanathan S, Capasso F, Kats M A and Ronning C 2017 Phys. Rev. Appl. 8 014009
|
[9] |
Kats M A, Blanchard R, Genevet P and Capasso F 2013 Nat. Mater. 12 20
|
[10] |
Yu N and Capasso F 2014 Nat. Mater. 13 139
|
[11] |
Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 6526
|
[12] |
Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
|
[13] |
Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C and Novoselov K S 2011 Nat. Commun. 2 458
|
[14] |
Gilbertson A M, Francescato Y, Roschuk T, Shautsova V, Chen Y, Sidiropoulos T P, Hong M, Giannini V, Maier S A, Cohen L F and Oulton R F 2015 Nano Lett. 15 3458
|
[15] |
Jariwala D, Davoyan A R, Tagliabue G, Sherrott M C, Wong J and Atwater H A 2016 Nano Lett. 16 5482
|
[16] |
Park J, Kang J H, Vasudev A P, Schoen D T, Kim H, Hasman E and Brongersma M L 2014 ACS Photon. 1 812
|
[17] |
Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S and Capasso F 2012 Appl. Phys. Lett. 101 221101
|
[18] |
Luo J, Li S, Hou B and Lai Y 2014 Phys. Rev. B 90 165128
|
[19] |
Liu D, Yu H, Duan Y, Li Q and Xuan Y 2016 Sci. Rep. 6 32515
|
[20] |
Palik E D 1985 Handbook of Optical Constants of Solids (San Deigo: Academic Press) USA, pp. 571-586
|
[21] |
Cao G, Li X, Zhan Y, Wu S, Shang A, Zhang C, Yang Z and Zhai X 2014 Opt. Express 22 A1761
|
[22] |
Wi S, Kim H, Chen M, Nam H, Guo L, Meyhofer E and Liang X 2014 ACS Nano 8 5270
|
[23] |
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2011 ACS Nano 6 74
|
[24] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti I V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[25] |
Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
|
[26] |
Cao G, Shang A, Zhang C, Gong Y, Li S, Bao Q and Li X 2016 Nano Energy 30 260
|
[27] |
Shang A, Zhai X, Zhang C, Zhan Y, Wu S and Li X 2015 Prog. Photovolt.: Res. Appl. 23 1734
|
[28] |
Li X, Zhan Y and Wang C 2015 Prog. Photovolt.: Res. Appl. 23 628
|
[29] |
Li X, Hylton N P, Giannini V, Lee K H, EkinsDaukes N J and Maier S A 2013 Prog. Photovolt.: Res. Appl. 21 109
|
[30] |
Eichfeld S M, Eichfeld C M, Lin Y C, Hossain L and Robinson J A 2014 APL Mater. 2 092508
|
[31] |
Yim C, O'Brien M, McEvoy N, Winters S, Mirza I, Lunney J G and Duesberg G S 2014 Appl. Phys. Lett. 104 103114
|
[32] |
Liu H L, Shen C C, Su S H, Hsu C L, Li M Y and Li L J 2014 Appl. Phys. Lett. 105 201905
|
[33] |
Bao W, Cai X, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
|
[34] |
Das S, Chen H Y, Penumatcha A V and Appenzeller J 2012 Nano Lett. 13 100
|
[35] |
Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788
|
[36] |
Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kimv P and Hone J 2015 Nat. Nanotechnol. 10 534
|
[37] |
Liu W, Kang J, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Nano Lett. 13 1983
|
[38] |
Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785
|
[39] |
Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
|
[40] |
Zhou S, Ye Y, Ding K, Jiang D, Dou X and Sun B 2018 Chin. Phys. Lett. 35 066201
|
[41] |
Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H, & Harun S W 2017 Chin. Phys. Lett. 34 014202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|