Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124202    DOI: 10.1088/1674-1056/27/12/124202
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: materials, physics, and applications Prev   Next  

Physical manipulation of ultrathin-film optical interference for super absorption and two-dimensional heterojunction photoconversion

Guo-Yang Cao(曹国洋)1,2, Cheng Zhang(张程)1,2, Shao-Long Wu(吴绍龙)1,2, Dong Ma(马冬)3, Xiao-Feng Li(李孝峰)1,2
1 School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University, Suzhou 215006, China;
2 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Laboratory of Modern Optical Technologies of the Education Ministry of China, Soochow University, Suzhou 215006, China;
3 School of Rail Transportation, Soochow University, Suzhou 215131, China
Abstract  

Ultrathin optical interference in a system composed of absorbing material and metal reflector has attracted extensive attention due to its potential application in realizing highly efficient optical absorption by using extremely thin semiconductor material. In this paper, we study the physics behind the high absorption of ultrathin film from the viewpoint of destructive interference and admittance matching, particularly addressing the phase evolution by light propagation and interface reflection. The physical manipulations of the ultrathin interference effect by controlling the substrate material and semiconductor material/thickness are examined. We introduce typical two-dimensional materials–i.e., MoS2 and WSe2–as the absorbing layer with thickness below 10 nm, which exhibits~90% absorption in a large range of incident angle (0°~70°). According to the ultrathin interference mechanism, we propose the ultrathin (<20 nm) MoS2/WSe2 heterojunction for photovoltaic application and carefully examine the detailed optoelectronic responses by coupled multiphysics simulation. By comparing the same cells on SiO2 substrate, both the short-circuit current density (up to 20 mA/cm2) and the photoelectric conversion efficiency (up to 9.5%) are found to be increased by~200%.

Keywords:  photovoltaic      subwavelength structures      interference coating  
Received:  13 April 2018      Revised:  12 September 2018      Accepted manuscript online: 
PACS:  42.25.Hz (Interference)  
  78.66.-w (Optical properties of specific thin films)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61675142 and 61875143), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140359), the Natural Science Research Project of the Higher Educational Institutions of Jiangsu Province, China (Grant No. 17KJA480004), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX17_2027), and the Priority Academic Program Development of the Higher Educational Institutions of Jiangsu Province, China.

Corresponding Authors:  Dong Ma, Xiao-Feng Li     E-mail:  madong@suda.edu.cn;xfli@suda.edu.cn

Cite this article: 

Guo-Yang Cao(曹国洋), Cheng Zhang(张程), Shao-Long Wu(吴绍龙), Dong Ma(马冬), Xiao-Feng Li(李孝峰) Physical manipulation of ultrathin-film optical interference for super absorption and two-dimensional heterojunction photoconversion 2018 Chin. Phys. B 27 124202

[1] Piper J R and Fan S 2016 ACS Photon. 3 571
[2] Pala R A, White J, Barnard E, Liu J and Brongersma M L 2009 Adv. Mater. 21 3504
[3] Hasobe T, Fukuzumi S and Kamat P V 2006 J. Phys. Chem. B 110 25477
[4] Lebedev N, Trammell S A, Dressick W, Kedziora G S, Griva I and Schnur J M 2011 Photochem. Photobiol. 87 1024
[5] Yeh D M, Huang C F, Chen C Y, Lu Y C and Yang C C 2008 Nanotechnol. 19 345201
[6] Sun G, Khurgin J B and Soref R A 2008 J. Opt. Soc. Am. B 25 1748
[7] Kano H and Kawata S 1994 Appl. Opt. 33 5166
[8] Rensberg J, Zhou Y, Richter S, Wan C, Zhang S, Schöppe P, SchmidtGrund R, Ramanathan S, Capasso F, Kats M A and Ronning C 2017 Phys. Rev. Appl. 8 014009
[9] Kats M A, Blanchard R, Genevet P and Capasso F 2013 Nat. Mater. 12 20
[10] Yu N and Capasso F 2014 Nat. Mater. 13 139
[11] Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 6526
[12] Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
[13] Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C and Novoselov K S 2011 Nat. Commun. 2 458
[14] Gilbertson A M, Francescato Y, Roschuk T, Shautsova V, Chen Y, Sidiropoulos T P, Hong M, Giannini V, Maier S A, Cohen L F and Oulton R F 2015 Nano Lett. 15 3458
[15] Jariwala D, Davoyan A R, Tagliabue G, Sherrott M C, Wong J and Atwater H A 2016 Nano Lett. 16 5482
[16] Park J, Kang J H, Vasudev A P, Schoen D T, Kim H, Hasman E and Brongersma M L 2014 ACS Photon. 1 812
[17] Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S and Capasso F 2012 Appl. Phys. Lett. 101 221101
[18] Luo J, Li S, Hou B and Lai Y 2014 Phys. Rev. B 90 165128
[19] Liu D, Yu H, Duan Y, Li Q and Xuan Y 2016 Sci. Rep. 6 32515
[20] Palik E D 1985 Handbook of Optical Constants of Solids (San Deigo: Academic Press) USA, pp. 571-586
[21] Cao G, Li X, Zhan Y, Wu S, Shang A, Zhang C, Yang Z and Zhai X 2014 Opt. Express 22 A1761
[22] Wi S, Kim H, Chen M, Nam H, Guo L, Meyhofer E and Liang X 2014 ACS Nano 8 5270
[23] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2011 ACS Nano 6 74
[24] Radisavljevic B, Radenovic A, Brivio J, Giacometti I V and Kis A 2011 Nat. Nanotechnol. 6 147
[25] Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[26] Cao G, Shang A, Zhang C, Gong Y, Li S, Bao Q and Li X 2016 Nano Energy 30 260
[27] Shang A, Zhai X, Zhang C, Zhan Y, Wu S and Li X 2015 Prog. Photovolt.: Res. Appl. 23 1734
[28] Li X, Zhan Y and Wang C 2015 Prog. Photovolt.: Res. Appl. 23 628
[29] Li X, Hylton N P, Giannini V, Lee K H, EkinsDaukes N J and Maier S A 2013 Prog. Photovolt.: Res. Appl. 21 109
[30] Eichfeld S M, Eichfeld C M, Lin Y C, Hossain L and Robinson J A 2014 APL Mater. 2 092508
[31] Yim C, O'Brien M, McEvoy N, Winters S, Mirza I, Lunney J G and Duesberg G S 2014 Appl. Phys. Lett. 104 103114
[32] Liu H L, Shen C C, Su S H, Hsu C L, Li M Y and Li L J 2014 Appl. Phys. Lett. 105 201905
[33] Bao W, Cai X, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[34] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2012 Nano Lett. 13 100
[35] Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788
[36] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kimv P and Hone J 2015 Nat. Nanotechnol. 10 534
[37] Liu W, Kang J, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Nano Lett. 13 1983
[38] Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785
[39] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Castro Neto A H and Novoselov K S 2013 Science 340 1311
[40] Zhou S, Ye Y, Ding K, Jiang D, Dou X and Sun B 2018 Chin. Phys. Lett. 35 066201
[41] Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H, & Harun S W 2017 Chin. Phys. Lett. 34 014202
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[4] Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe
Saichao Yan(闫赛超), Jinchen Wei(魏金宸), Shanshan Wang(王珊珊), Menglin Huang(黄梦麟), Yu-Ning Wu(吴宇宁), and Shiyou Chen(陈时友). Chin. Phys. B, 2022, 31(11): 116103.
[5] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[6] Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass
Xing-Cai Li(李兴财), Juan Wang(王娟), and Guo-Qing Su(苏国庆). Chin. Phys. B, 2021, 30(10): 104101.
[7] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[8] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[9] New design of ferroelectric solar cell combined with luminescent solar concentrator
Slimane Latreche, Mohamed Fathi, Abderrahmane Kadri. Chin. Phys. B, 2019, 28(8): 088801.
[10] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[11] Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies
Yan-Fang Zhang(张彦芳), Xuan-Hu Chen(陈选虎), Yang Xu(徐阳), Fang-Fang Ren(任芳芳), Shu-Lin Gu(顾书林), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东). Chin. Phys. B, 2019, 28(2): 028501.
[12] Electronic states and molecular orientation of ITIC film
Ying-Ying Du(杜莹莹), De-Qu Lin(林德渠), Guang-Hua Chen(陈光华), Xin-Yuan Bai(白新源), Long-Xi Wang(汪隆喜), Rui Wu(吴蕊), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Hong-Nian Li(李宏年). Chin. Phys. B, 2018, 27(8): 088801.
[13] Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors
Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛). Chin. Phys. B, 2018, 27(12): 128502.
[14] Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering
Tang-Liu Yan(阎堂柳), Bin Chen(陈斌), Gang Liu(刘钢), Rui-Peng Niu(牛瑞鹏), Jie Shang(尚杰), Shuang Gao(高双), Wu-Hong Xue(薛武红), Jing Jin(金晶), Jiu-Ru Yang(杨九如), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067702.
[15] A simulation study on p-doping level of polymer host material in P3HT: PCBM bulk heterojunction solar cells
Hossein Movla, Mohammad Babazadeh. Chin. Phys. B, 2017, 26(4): 048802.
No Suggested Reading articles found!