Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124204    DOI: 10.1088/1674-1056/27/12/124204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays

Afshari-Bavil Mehdi1,2, Xiao-Ping Lou(娄小平)1,2, Ming-Li Dong(董明利)1,2, Chuan-Bo Li(李传波)3, Shuai Feng(冯帅)3, Parsa Saviz4, Lian-Qing Zhu(祝连庆)1,2
1 Joint International Research Laboratory of Advanced Photonics and Electronics, Beijing Information Science and Technology University, Beijing 100192, China;
2 Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
3 School of Science, Minzu University of China, Beijing 100081, China;
4 Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China
Abstract  

The plasmonics Talbot effect in metallic layer with infinite periodic grooves is presented in this study. Numerical approach based on the finite element method is employed to verify the derived Talbot carpet on the non-illumination side. The groove depth is less than the metallic layer thickness; however, for specific conditions, surface plasmons polaritons (SPPs) can penetrate through grooves, propagate under the metallic layer, and form Talbot revivals. The geometrical parameters are specified via groove width, gap size, period, and wavelength, and their proper values are determined by introducing two opening ratio parameters. To quantitatively compare different Talbot carpets, we introduce new parameters such as R-square that characterizes the periodicity of Talbot images. The higher the R-square of a carpet, the more coincident with non-paraxial approximation the Talbot distance becomes. We believe that our results can help to understand the nature of SPPs and also contribute to exploring this phenomenon in Talbot-image-based applications, including imaging, optical systems, and measurements.

Keywords:  Talbot image      surface plasmon polaritons      groove array  
Received:  15 May 2018      Revised:  24 August 2018      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  78.68.+m (Optical properties of surfaces)  
  68.47.De (Metallic surfaces)  
Fund: 

Project supported by the 111 Project, China (Grant No. D17021) and the Changjiang Scholars and Innovative Research Team in University, China (Grant No. PCSIRT, IRT_16R07).

Corresponding Authors:  Afshari-Bavil Mehdi, Chuan-Bo Li     E-mail:  mehdi.afshari@bistu.edu.cn;cbli@semi.ac.cn

Cite this article: 

Afshari-Bavil Mehdi, Xiao-Ping Lou(娄小平), Ming-Li Dong(董明利), Chuan-Bo Li(李传波), Shuai Feng(冯帅), Parsa Saviz, Lian-Qing Zhu(祝连庆) Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays 2018 Chin. Phys. B 27 124204

[1] Talbot H F 1836 London Edinburgh Philos. Mag. J. Sci. 9 401
[2] Zhu H and Semperlotti F 2015 Phys. Rev. B 91 104304
[3] Azaña J 2005 Opt. Lett. 30 227
[4] Kim H, Li W, Danylyuk S, Brocklesby W S, Marconi M C and Juschkin L 2015 J. Phys. D. Appl. Phys. 48 375101
[5] Stuerzebecher L, Harzendorf T, Vogler U, Zeitner U D and Voelkel R 2010 Opt. Express 18 19485
[6] Liu D, Zhang Y, Wen J, Chen Z, Wei D, Hu X,Zhao G, Zhu S N and Xiao M 2015 Sci. Rep. 4 6134
[7] Gao H, Hyun J K, Lee M H, Yang J C, Lauhon L J and Odom T W 2010 Nano Lett. 10 4111
[8] Liu L 1989 Appl. Opt. 28 4668
[9] Maddaloni P, Paturzo M, Ferraro P, Malara P, De Natale P, Gioffré M, Coppola G and Iodice M 2009 Appl. Phys. Lett. 94 121105
[10] Song Y G, Han B M and Chang S 2001 Opt. Commun. 198 7
[11] Ao Z G, Sun J H, Cai H, Song G F, Song J K, Song Y Z and Xu Y 2016 J. Semicond. 37 123002
[12] Zhang Z Y and Song G F 2017 J. Semicond. 38 22001
[13] Bavil M A, Deng Q and Zhou Z 2014 Opt. Lett. 39 4506
[14] Bavil M A, Zhou Z and Deng Q 2013 Opt. Express 21 17066
[15] Bavil M A, Liu Z, Zhou W, Li C and Cheng B 2017 Plasmonics 12 1709
[16] Cherukulappurath S, Heinis D, Cesario J, van Hulst N F, Enoch S and Quidant R 2009 Opt. Express 17 23772
[17] Li L, Fu Y, Wu H, Zheng L, Zhang H, Lu Z, Sun Q and Yu W 2011 Opt. Express 19 19365
[18] Maradudin A A and Leskova T A 2009 New J. Phys. 11 33004
[19] Cortés L R, Chatellus H G and Azaña J 2016 Opt. Lett. 41 340
[20] Shi X, Yang W, Xing H and Chen X 2015 Opt. Lett. 40 1635
[21] Zhang W, Zhao C, Wang J and Zhang J 2009 Opt. Express 17 19757
[22] Van Oosten D, Spasenović M and Kuipers L 2010 Nano Lett. 10 286
[23] Chowdhury M H, Lindquist N C, Lesuffleur A, Oh S H, Lakowicz J R and Ray K 2012 J. Phys. Chem. C 116 19958
[24] Yu Y, Chassaing D, Scherer T, Landenberger B and Zappe H 2013 Plasmonics 8 723
[25] Li W, Li H, Gao B and Yu Y 2017 Sci. Rep. 7 45573
[26] Rayleigh L 1881 London Edinburgh Dublin Philos. Mag. J. Sci. 11 196
[27] Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer Science & Business Media) p. 28
[28] Palik E D 1998 Handbook of Optical Constants of Solids (Academic Press)
[29] AfshariBavil M, Luo X P, Li C B, Feng S, Dong M L and Zhu L Q 2018 Plasmonics
[30] Hua Y, Suh J Y, Zhou W, Huntington M D and Odom T W 2012 Opt. Express 20 14284
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[3] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[4] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[5] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[6] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[7] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[8] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[9] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[10] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[11] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[14] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[15] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
No Suggested Reading articles found!