CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition |
Qeemat Gul1,2, Wei He(何为)1,2, Yan Li(李岩)1,2, Rui Sun(孙瑞)1,2, Na Li(李娜)1,2, Xu Yang(杨旭)1,2, Yang Li(李阳)1,2, Zi-Zhao Gong(弓子召)1,2, ZongKai Xie(谢宗凯)1,2, Xiang-Qun Zhang(张向群)1, Zhao-Hua Cheng(成昭华)1,2 |
1 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The uniaxial magnetic anisotropy of obliquely deposited Fe(001)/Pd film on MgO(001) substrate is investigated as a function of deposition angle and film thickness. The values of incidence angle of Fe flux relative to surface normal of the substrate are 0°, 45°, 55°, and 70°, respectively. In-situ low energy electron diffraction is employed to investigate the surface structures of the samples. The Fe film thicknesses are determined to be 50 ML, 45 ML, 32 ML, and 24 ML (1 ML=0.14 nm) by performing x-ray reflectivity on the grown samples, respectively. The normalized remanent magnetic saturation ratio and coercivity are obtained by the longitudinal surface magneto-optical Kerr effect. Here, the magnetic anisotropy constants are quantitatively determined by fitting the anisotropic magnetoresistance curves under different fields. These measurements show four-fold cubic anisotropy in a large Fe film thickness (50 ML) sample, but highly in-plane uniaxial magnetic anisotropies in thin films (24 ML and 32 ML) samples. In the obliquely deposited Fe films, the coercive fields and the uniaxial magnetic anisotropies (UMAs) increase as the deposition angle becomes more and more tilted. In addition, the UMA decreases with the increase of the Fe film thickness. Our work provides the possibility of manipulating uniaxial magnetic anisotropy, and paves the way to inducing UMA by oblique deposition with smaller film thickness.
|
Received: 06 June 2018
Revised: 30 June 2018
Accepted manuscript online:
|
PACS:
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701), the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 51671212), and the Chinese Government Scholarship (Grant No. 2015GXYG37). |
Corresponding Authors:
Zhao-Hua Cheng
E-mail: zhcheng@iphy.ac.cn
|
Cite this article:
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华) Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition 2018 Chin. Phys. B 27 097504
|
[1] |
Chowdhury N and Bedanta S 2014 AIP Adv. 4 027104
|
[2] |
Knorr T G and Hoffman R W 1959 Phys. Rev. 113 1039
|
[3] |
Smith D O 1959 J. Appl. Phys. 30 S5264
|
[4] |
Chiba K, Sato K, Ebine Y and Sasaki T 1989 IEEE Trans. Consum. Electron. 35 421
|
[5] |
West F G 1964 J. Appl. Phys. 35 1827
|
[6] |
Hashimoto T, Hara K, Okamoto K, Hashimoto T and Fujiwara H 1973 J. Phys. Soc. Jpn. 34 1415
|
[7] |
Hoshi Y, Suzuki E and Naoe M 1996 J. Appl. Phys. 79 4945
|
[8] |
Alameda J M, Carmona F, Salas F H, Alvarez-Prado L M, Morales R and Perez G T 1996 J. Magn. Magn. Mater. 154 249
|
[9] |
McMichael R D, Lee C G, Bonevich J E, Chen P J, Miller W, Egelhoff W F 2000 J. Appl. Phys. 88 5296
|
[10] |
Hadley M J and Pollard R J 2002 J. Appl. Phys. 92 7389
|
[11] |
Zhao Z, Mani P, Mankey G J, Gubbiotti G, Tacchi S, Spizzo F, Lee W T, Yu C T and Pechan M J 2005 Phys. Rev. B 71 104417
|
[12] |
Umlor M T 2005 Appl. Phys. Lett. 87 082505
|
[13] |
Fukuma Y, Lu Z, Fujiwara H, Mankey G J, Butler W H and Matsunuma S 2009 J. Appl. Phys. 106 076101
|
[14] |
Chi C S, Wang B Y, Pong W F, Ho T Y, Tsai C J, Lo F Y, Chern M Y and Lin W C 2012 J. Appl. Phys. 111 123918
|
[15] |
Hillebrands B, Boufelfel A, Falco C M, Baumgart P, Güntherodt G, Zirngiebl E and Thompson J D 1988 J. Appl. Phys. 63 3880
|
[16] |
Engel B N, Wiedmann M H, Van Leeuwen P A and Falco C M 1993 Phys. Rev. B 48 9894
|
[17] |
Beauvillain P, Bounouh A, Chappert C, Megy R, Ould-Manfoud S, Renardt J P, Viellet P, Weller D and Corno J 1994 J. Appl. Phys. 76 6078
|
[18] |
Schumann F O, Buckley M E, Bl and J A C 1994 J. Appl. Phys. 76 6078
|
[19] |
Rezende S M, Moura J A S, De Aguiar F M and Schreiner W H 1994 Phys. Rev. B 49 15105
|
[20] |
Yaegashi S, Kurihara T and Satoh K 1997 J. Appl. Phys. 81 6303
|
[21] |
Mattheis R and Quednau G 1999 J. Magn. Magn. Mater. 205 143
|
[22] |
Garreau G, Hajjar S, Bubendorff J L, Pirri C, Berling D, Mehdaoui A, Stephan R, Wetzel P, Zabrocki S, Gewinner G, Boukari S and Beaure paire E 2005 Phys. Rev. B 71 094430
|
[23] |
McGuire T R and Potter R I 1975 IEEE Trans. Mag. 11 1018
|
[24] |
Dahlberg E D, Riggs K and Prinz G A 1988 J. Appl. Phys. 63 4270
|
[25] |
Miller B H and Dahlberg E D 1996 Appl. Phys. Lett. 69 3932
|
[26] |
Krivorotov I N, Leighton C, Nogues J, Schuller I K and Dahlberg E D 2002 Phys. Rev. B 65 100402
|
[27] |
Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 262506
|
[28] |
Li J, Jin E, Son H, Tan A, Cao W N, Hwang C and Qiu Z Q 2012 Rev. Sci. Instrum. 83 033906
|
[29] |
Martínez Boubeta C, Clavero C, García-Martín J M, Armelles G, Cebollada A, Balcells Ll, Menéndez J L, Peiró F, Cornet A and Toney Michael F 2005 Phys. Rev. B 71 014407
|
[30] |
Zhan Qing-feng, Vandezande Stijn and Haesendonck Chris Van 2007 Appl. Phys. Lett. 91 122510
|
[31] |
Zhan Q F, Vandezande S, Kristiaan T and Haesendonck C V 2009 Phys. Rev. B 80 094416
|
[32] |
Spurgeon Steven R, Sloppy Jennifer D, Tao Runzhe, Klie Robert F, Lofl, Samuel E, Baldwin Jon K, Misra Amit and Taheri Mitra L 2012 J. Appl. Phys. 112 013905
|
[33] |
Lee S C, Kim K S, Lee S H, Pi U H, Kim K, Jang Y and Chung U I 2013 J. Appl. Phys. 113 023914
|
[34] |
Mallik S, Chowdhury N and Bedanta S 2014 AIP Adv. 4 097118
|
[35] |
Ma T P, Zhang S F, Yang Y, Chen Z H, Zhao H B and Wu Y Z 2015 J. Appl. Phys. 117 013903
|
[36] |
Kozioł-RachwałA, Slezak T, Nozaki T, Yuasa S and Korecki J 2016 Appl. Phys. Lett. 108 041606
|
[37] |
Du H F, He W, Liu H L, Fang Y P, Wu Q, Zou T, Zhang X Q, Sun Y and Cheng Z H 2010 Appl. Phys. Lett. 96 142511
|
[38] |
Liu H L, He W, Du H F, Fang Y P, Wu Q, Zhang X Q, Yang H T and Cheng Z H 2012 Chin. Phys. B 21 077503
|
[39] |
Urano T and Kanaji T 1988 J. Phys. Soc. Jpn. 57 3043
|
[40] |
Liu C, Park Y and Bader S D 1992 J. Magn. Magn. Mater. 111 L225
|
[41] |
Hu B, He W, Ye J, Tang J, Zhang Y S, Syed S A, Zhang X Q and Cheng Z H 2015 Chin. Phys. B 24 077502
|
[42] |
Zhan Q F, Vandezande S, Haesendonck C V and Temst K 2007 Appl. Phys. Lett. 91 122510
|
[43] |
Zhan Q F, Vandezande S, Temst K and Haesendonck C V 2009 Phys. Rev. B 80 094416
|
[44] |
Childress J R, Kergoat R, Durand O, George J M, Galtier P, Miltat J and Schuhl A 1994 J. Magn. Magn. Mater. 130 13
|
[45] |
Hu B, He W, Ye J, Tang J, Zhang Y S, Ahmad S S, Zhang X Q and Cheng Z H 2015 Sci. Rep. 5 14114
|
[46] |
Postava K, Jaffres H, Schuhl A, Nguyen Van Dau F, Goiran M and Fert A R 1997 J. Magn. Magn. Mater. 172 199
|
[47] |
Fang Y P, He W, Liu H L, Zhan Q F, Du H F, Wu Q, Yang H T, Zhang X Q and Cheng Z H 2010 Appl. Phys. Lett. 97 22507
|
[48] |
Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
|
[49] |
Wu D, Wei P, Johnston-Halperin E, Awschalom D D and Shi J 2008 Phys. Rev. B 77 125320
|
[50] |
Ye J, He W, Wu Q, Hu B, Tang J, Zhang X Q, Chen Z Y and Cheng Z H 2014 Appl. Phys. Lett. 105 102406
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|