Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097105    DOI: 10.1088/1674-1056/27/9/097105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiscale energy density algorithm and application to surface structure of Ni matrix of superalloy

Min Sun(孙敏)1, Chong-Yu Wang(王崇愚)2, Ji-Ping Liu(刘吉平)1
1 School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  

Multiscale materials modeling as a new technique could offer more accurate predictive capabilities. The most active area of research for multiscale modeling focuses on the concurrent coupling by considering models on disparate scales simultaneously. In this paper, we present a new concurrent multiscale approach, the energy density method (EDM), which couples the quantum mechanical (QM) and the molecular dynamics (MD) simulations simultaneously. The coupling crossing different scales is achieved by introducing a transition region between the QM and MD domains. In order to construct the energy formalism of the entire system, concept of site energy and weight parameters of disparate scales are introduced. The EDM is applied to the study of the multilayer relaxation of the Ni (001) surface structure and is validated against the periodic density functional theory (DFT) calculations. The results show that the concurrent EDM could combine the accuracy of the DFT description with the low computational cost of the MD simulation and is suitable to the study of the local defects subjected to the influence of the long-range environment.

Keywords:  first-principles calculation      molecular dynamics      surface relaxation      nickel  
Received:  17 July 2018      Revised:  28 August 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
Corresponding Authors:  Chong-Yu Wang, Ji-Ping Liu     E-mail:  cywang@mail.tsinghua.edu.cn;liujp@bit.edu.cn

Cite this article: 

Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平) Multiscale energy density algorithm and application to surface structure of Ni matrix of superalloy 2018 Chin. Phys. B 27 097105

[1] Glimm J and Sharp D H 1997 SIAM News October
[2] Steinhauser M O 2008 Comput. Multiscale Modeling Fluids Solids (Heidelberg:Springer) p. 31
[3] Zhang X, Lu G and Curtin W A 2013 Phys. Rev. B 87 054113
[4] Nair A K, Warner D H and Hennig R G 2011 J. Mech. Phys. Solids 59 2476
[5] Broughton J Q, Abraham F F, Bernstein N and Kaxiras E 1999 Phys. Rev. B 60 2391
[6] Weinan E 2011 Principles Multiscale Modeling (Cambridge:Cambridge University Press) p. 15
[7] Wang C Y, Liu S Y and Han L G 1990 Phys. Rev. B 41 1359
[8] Yu X X and Wang C Y 2012 Philos. Mag. 92 4028
[9] Miller R E and Tadmor E B 2009 Modell. Simul. Mater. Sci. Eng. 17 053001
[10] Clementi E 1988 Philos. Trans. R. Soc. London Ser. A 326 445
[11] Yu X X and Wang C Y 2009 Acta Mater. 57 5914
[12] Sun M and Wang C Y 2016 Chin. Phys. B 6 397
[13] Ogata S, Lidorikis E, Shimojo F, Nakano A, Vashishta P and Kalia R K 2001 Comput. Phys. Commun. 138 143
[14] Karplus M 2014 Angew. Chem. Int. Edit. 53 9992
[15] Choly N, Lu G, Weinan E and Kaxiras E 2005 Phys. Rev. B 71 094101
[16] Woodward C and Rao S 2002 Phys. Rev. Lett. 88 216402
[17] Woodward C and Rao S 2004 Philos. Mag. 84 401
[18] Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G and Vitek V 2005 Science 309 1059
[19] Woodward C, Trinkle D R, Jr L G and Olmsted D L 2008 Phys. Rev. Lett. 100 045507
[20] Liu F H and Wang C Y 2017 RSC Adv. 7 19124
[21] Leyson G P M, Curtin W A, Jr L G and Woodward C 2010 Nat. Mater. 9 750
[22] Shilkrot L E, Curtin W A and Miller R E 2002 J. Mech. Phys. Solids 50 2085
[23] Weinan E, Lu J and Yang J Z 2006 Phys. Rev. B 74 214115
[24] Bernstein N, Kermode J R and Csányi G 2009 Rep. Prog. Phys. 72 026501
[25] Zhang X and Wang C Y 2008 Eur. Phys. J. B 65 515
[26] Li Z, Wang C Y, Zhang X, Ke S H and Yang W 2008 J. Appl. Phys. 103 113714
[27] Wang C Y and Zhang X 2006 Curr. Opin. Solid St. M. 10 2
[28] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[29] Ehrenreich H, Seitz F and Turnbull D 1980 Solid State Physics:Advances in Research and Applications (London:Academic) p. 35
[30] Zhang X, Wang C Y and Lu G 2008 Phys. Rev. B 78 235119
[31] Sun M, Wang S Y, Wang D W and Wang C Y 2016 Chin. Phys. B 25 013105
[32] Daw M S 1989 Phys. Rev. B 39 7441
[33] Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
[34] Plummer E W, Matzdorf R, Melechko A V, Pierce J P and Zhang J 2002 Surf. Sci. 500 1
[35] Da Silva J L F, Schroeder K and Blügel S 2004 Phys. Rev. B 69 245411
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[38] Lin J, Wang S Y and Wang C Y 2007 J. Compt. Res. Dev. 10 006
[39] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[40] Du J P, Wang C Y and Yu T 2013 Modell. Simul. Mater. Sci. Eng. 21 015007
[41] Juarez L F, Da S, Kurt S and Stefan B 2004 Phys. Rev. B 69 245411
[42] Smoluchowski R 1941 Phys. Rev. 60 661
[43] Young J L, Nieminen R M and Kimb S 2001 Comput. Phys. Commun. 142 414
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[12] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[13] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
No Suggested Reading articles found!