Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097104    DOI: 10.1088/1674-1056/27/9/097104
RAPID COMMUNICATION Prev   Next  

Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction

Yangfeng Li(李阳锋)1,2, Yang Jiang(江洋)1,2, Junhui Die(迭俊珲)1,2, Caiwei Wang(王彩玮)1,2, Shen Yan(严珅)1,2, Haiyan Wu(吴海燕)1,2, Ziguang Ma(马紫光)1,2, Lu Wang(王禄)1,2, Haiqiang Jia(贾海强)1,2, Wenxin Wang(王文新)1,2, Hong Chen(陈弘)1,2
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Absorption and carrier transport behavior plays an important role in the light-to-electricity conversion process, which is difficult to characterize. Here we develop a method to visualize such a conversion process in the InGaN/GaN multi-quantum wells embedded in a p-n junction. Under non-resonant absorption conditions, a photocurrent was generated and the photoluminescence intensity decayed by more than 70% when the p-n junction out-circuit was switched from open to short. However, when the excitation photon energy decreased to the resonant absorption edge, the photocurrent dropped drastically and the photoluminescence under open and short circuit conditions showed similar intensity. These results indicate that the escaping of the photo-generated carriers from the quantum wells is closely related to the excitation photon energy.

Keywords:  multiple quantum wells      p-n junction      light-to-electricity      photocurrent  
Received:  25 May 2018      Revised:  18 June 2018      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  73.21.Fg (Quantum wells)  
  73.63.Hs (Quantum wells)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400302 and 2016YFB0400603), the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, and 11374340), and the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515001).

Corresponding Authors:  Hong Chen     E-mail:  hchen@iphy.ac.cn

Cite this article: 

Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘) Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction 2018 Chin. Phys. B 27 097104

[1] Battaglia C, Cuevas A and De Wolf S 2016 Energy & Environmental Sci. 9 1552
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energy 2 17032
[3] Liu L, Bi H, Zhao Y, Zhao X, Han X, Wang G, Xu Y, Li Y and Che R 2017 Appl. Phys. Lett. 111 053503
[4] Åberg I, Vescovi G, Asoli D, Naseem U, Gilboy J P, Sundvall C, Dahlgren A, Svensson K E, Anttu N, Björk M T and Samuelson L 2016 IEEE J. Photovoltaics 6 185
[5] Hirst L C, Yakes M K, Warner J H, Bennett M F, Schmieder K J, Walters R J and Jenkins P P 2016 Appl. Phys. Lett. 109 033908
[6] Kada T, Asahi S, Kaizu T, Harada Y, Kita T, Tamaki R, Okada Y and Miyano K 2015 Phys. Rev. B 91 201303
[7] Białek M, Witowski A M, Orlita M, Potemski M, Czapkiewicz M, Wróbel J, Umansky V, Grynberg M and Ł usakowski J 2014 J. Appl. Phys. 115 214503
[8] Luo L B, Chen J J, Wang M Z, Hu H, Wu C Y, Li Q, Wang L, Huang J A and Liang F X 2014 Advanced Funct. Mater. 24 2794
[9] Peng K, Parkinson P, Fu L, Gao Q, Jiang N, Guo Y N, Wang F, Joyce H J, Bol, J L, Tan H H, Jagadish C and Johnston M B 2015 Nano Lett. 15 206
[10] Grundmann M 2010 The Physics of Semicondutors (2nd Edn) (Heidelberg:Springer-Verlag) pp. 369-374
[11] Botha J R and Leitch A W R 1994 Phys. Rev. B 50 18147
[12] Lambkin J D, Dunstan D J, Homewood K P, Howard L K and Emeny M T 1990 Appl. Phys. Lett. 57 1986
[13] Lang J R, Young N G, Farrell R M, Wu Y R and Speck J S 2012 Appl. Phys. Lett. 101 181105
[14] Massimo G, Juan M P, Marcello C, Christiane D, Bruno C and Jean M 1992 Phys. Rev. B 46 6922
[15] Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B and Koch S W 2009 Phys. Status Solidi C 6 S913
[16] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[17] Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M and Chen H 2016 Chin. Phy. B 25 117803
[18] Sun Q L, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Wang W X, Jia H Q, Zhou J M and Chen H 2016 Chin. Phys. Lett. 33 106801
[19] Wang W Q, Wang L, Jiang Y, Ma Z G, Sun L, Liu J, Sun Q L, Zhao B, Wang W X, Liu W M, Jia H Q and Chen H 2016 Chin. Phys. B 25 097307
[20] Yang H J, Ma Z G, Jiang Y, Wu H Y, Zuo P, Zhao B, Jia H Q and Chen H 2017 Sci. Rep. 7 43357
[21] Schubert M F, Xu J, Dai Q, Mont F W, Kim J K and Schubert E F 2009 Appl. Phys. Lett. 94 081114
[22] Lim S H, Ko Y H and Cho Y H 2014 Appl. Phys. Lett. 104 091104
[23] Song J H, Kim H J, Ahn B J, Dong Y Q, Hong S, Song J H, Moon Y, Yuh H K, Choi S C and Shee S 2009 Appl. Phys. Lett. 95 263503
[24] Basu P K 1997 Theory Opt. Processes Semicond.:Bulk Microstruct (1st Edn.) (New York:Oxford University Press) pp. 303-320
[25] Fonash S J 2010 Sol. Cell Device Physics (1st Edn.) (Burlington:Academic Press/Elsevier) pp. 14-25
[26] Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J and Sota T 2006 Nat. Mater. 5 810
[27] Lu T P, Ma Z G, Du C H, Fang Y T, Wu H Y, Jiang Y, Wang L, Dai L G, Jia H Q, Liu W M and Chen H 2015 Sci. Rep. 4 6131
[28] Eliseev P G, Perlin P, Lee J and Osiński M 1997 Appl. Phys. Lett. 71 569
[29] White M E, O'Donnell K P, Martin R W, Deatcher C J, Damilano B, Grandjean N and Massies J 2001 Phys. Status Solidi B 228 129
[30] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (3rd Edn.) (New York:John Wiley & Sons) pp. 28-30
[31] Sun C K, Vallée F, Keller S, Bowers J E and DenBaars S P 1997 Appl. Phys. Lett. 70 2004
[1] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[2] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[3] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[4] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[5] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[6] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[7] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[8] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[9] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[10] Optoelectronic properties of bottom gate-defined in-plane monolayer WSe2 p-n junction
Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Kuei-Lin Chiu(邱奎霖), Takashi Taniguchi, Xi-Feng Ren(任希锋), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(8): 087303.
[11] 4.3 THz quantum-well photodetectors with high detection sensitivity
Zhenzhen Zhang(张真真), Zhanglong Fu(符张龙), Xuguang Guo(郭旭光), Juncheng Cao(曹俊诚). Chin. Phys. B, 2018, 27(3): 030701.
[12] Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors
Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛). Chin. Phys. B, 2018, 27(12): 128502.
[13] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[14] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文). Chin. Phys. B, 2018, 27(1): 017804.
[15] Abundant photoelectronic behaviors of La0.67Sr0.33MnO3/Nb: SrTiO3 junctions
Hai-Lin Huang(黄海林), Deng-Jing Wang(王登京), Hong-Rui Zhang(张洪瑞), Hui Zhang(张慧), Chang-Min Xiong(熊昌民), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(7): 077302.
No Suggested Reading articles found!