Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094401    DOI: 10.1088/1674-1056/27/9/094401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials

Qi-Mei Zhao(赵启梅)1, Tong-Biao Wang(王同标)1, De-Jian Zhang(张德建)1, Wen-Xing Liu(刘文兴)1, Tian-Bao Yu(于天宝)1, Qing-Hua Liao(廖清华)1, Nian-Hua Liu(刘念华)2
1 Department of Physics, Nanchang University, Nanchang 330031, China;
2 Institute for Advanced Study, Nanchang University, Nanchang 330031, China
Abstract  

Hyperbolic metamaterials alternately stacked by graphene and silicon (Si) are proposed and theoretically studied to investigate the contribution of terahertz (THz) waves to near-field radiative transfer. The results show that the heat transfer coefficient can be enhanced several times in a certain THz frequency range compared with that between graphene-covered Si bulks because of the presence of a continuum of hyperbolic modes. Moreover, the radiative heat transfer can also be enhanced remarkably for the proposed structure even in the whole THz range. The hyperbolic dispersion of the graphene-based hyperbolic metamaterial can be tuned by varying the chemical potential or the thickness of Si, with the tunability of optical conductivity and the chemical potential of graphene fixed. We also demonstrate that the radiative heat transfer can be actively controlled in the THz frequency range.

Keywords:  radiative heat transfer      graphene      hyperbolic metamaterials  
Received:  16 February 2018      Revised:  15 May 2018      Accepted manuscript online: 
PACS:  44.40.+a (Thermal radiation)  
  78.67.Wj (Optical properties of graphene)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11704175, 11664024, and 61367006).

Corresponding Authors:  Tong-Biao Wang     E-mail:  tbwang@ncu.edu.cn

Cite this article: 

Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华) Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials 2018 Chin. Phys. B 27 094401

[1] Wilde Y D, Formanek F, Carminati R, Gralak B, Lemoine P A, Joulain K, Mulet J P, Chen Y and Greffet J J 2006 Nature 444 740
[2] Kittel A, Wischnath U, Welker J, Huth O, Rüting F and Biehs S A 2008 Appl. Phys. Lett. 93 193109
[3] Huth F, Schnell M, Wittborn J, Ocelic N and Hillenbr R 2011 Nat. Mater. 10 352
[4] Worbes L, Hellmann and Kittel A 2013 Phys. Rev. Lett. 110 134302
[5] Raman A P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540
[6] Laroche M, Carminati R and Greffet J J 2006 J. Appl. Phys. 100 063704
[7] Narayanaswamy A and Chen G 2003 Appl. Phys. Lett. 82 3544
[8] Messina R and Ben-Abdallah P 2013 Sci. Rep. 3 1383
[9] Biehs S A, Tschikin M, Messina R and Ben-Abdallah P 2013 Appl. Phys. Lett. 102 131106
[10] Biehs S A, Tschikin M, Messina R and Ben-Abdallah P 2012 Appl. Phys. Lett. 109 104301
[11] Shen S, Narayanaswamy A and Chen G 2009 Nano Lett. 9 2909
[12] Biehs S A, Ben-Abdallah P, Rosa F S S, Joulain K and Greffet J J 2011 Opt. Express 19 A1088
[13] Demtröder W 2008 Laser Spectrosc.:Vol 1:Basic Principles 4th edition (Berlin:Springer)
[14] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[15] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[16] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat Mater. 7 442
[17] Tonouchi M 2007 Nat. Photon. 1 97
[18] Kuznetsov S A, Paulish A G, Gelf, A V, Lazorskiy P A and Fedorinin V N 2012 Prog. Electromag. Res. 122 93
[19] Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D and Jepsen P U 2012 Opt. Express 20 635
[20] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[21] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[22] He X, Fujimura N, Lloyd J M, Erickson K J, Talin A A, Zhang Q, Gao W, Jiang Q, Kawano Y, Hauge R H, Léonard F and Kono J 2014 Nano Lett. 14 3953
[23] Guo Y, Cortes C L, Molesky S and Jacob Z 2012 Appl. Phys. Lett. 101 131106
[24] Kong B D, Sokolov V N, Kim K W and Trew R J 2010 IEEE Sens. J. 10 443
[25] Andryieuski A, Lavrinenko A V and Chigrin D N 2012 Phys. Rev. B 86 121108
[26] Falkovsky L A 2008 J. Phys:Conf. Ser. 129 012004
[27] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[28] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[29] Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
[30] Hu L and Chui S T 2002 Phys. Rev. B 66 085108
[31] Smith D R and Schurig D 2003 Phys. Rev. Lett. 90 077405
[32] Yeh P 1988 Optical Waves in Layered Media (New York:Wiley)
[33] Sayem A A, Rahman M M, Mahdy M R C, Jahangir I and Rahman M S 2016 Sci. Rep. 6 25442
[34] Brundermann E, Hubers H W and Kimmitt M F G 2012 Terahertz Techniques (Berlin Heidelberg:Springer Series in Optical Sciences)
[35] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.:Condens. Matter 19 026222
[36] Zhang Z M 2007 Nano/Microscale Heat Transfer (New York:McGraw-Hill)
[37] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys:Condens. Matter 25 215301
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!