Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097701    DOI: 10.1088/1674-1056/27/9/097701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry

Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新)
Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The magneto-electric effect in magnetic materials has been widely investigated, but obtaining an enhanced magneto-electric effect is challenging. In this study, tricolor superlattices composed of manganese oxides–Pr0.9Ca0.1MnO3, La0.9Sr0.1MnO3, and La0.9Sb0.1MnO3–on (001)-oriented Nb:SrTiO3 substrates with broken space-inversion and time-reversal symmetries are designed. Regarding the electric polarization in the hysteresis loops of the superlattices at different external magnetic fields, both coercive electric field Ec and remnant polarization intensity Pr clearly show strong magnetic-field dependences. At low temperatures (<120 K), a considerable magneto-electric effect in the well-defined tricolor superlattice is observed that is absent in the single compounds. Both maxima of the magneto-electric coupling coefficients ΔEc and ΔPr appear at 30 K. The magnetic dependence of the dielectric constant further supports the magneto-electric effect. Moreover, a dependence of the magneto-electric effect on the periodicity of the superlattices with various structures is observed, which indicates the importance of interfaces. Our experimental results verify previous theoretical results regarding magneto-electric interactions, thereby paving the way for the design and development of novel magneto-electric devices based on manganite ferromagnets.

Keywords:  multiferroic      magneto-electric effect      superlattice  
Received:  11 May 2018      Revised:  09 June 2018      Accepted manuscript online: 
PACS:  77.55.Nv (Multiferroic/magnetoelectric films)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Px (Epitaxial and superlattice films)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61471301).

Corresponding Authors:  Changle Chen     E-mail:  chenchl@nwpu.edu.cn

Cite this article: 

Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新) Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry 2018 Chin. Phys. B 27 097701

[1] Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628
[2] Li Y C, Zhou H, Pan D F, Zhang H and Wan J G 2015 Acta Phys. Sin. 64 097701 (in Chinese)
[3] Liu E H, Chen Z, Wen X L and Chen C L 2016 Acta Phys. Sin. 65 117701 (in Chinese)
[4] Chen J Y, Bai Y L, Nie C H and Zhao S F 2016 J. Alloy. Compd. 663 480
[5] Liu M, Zhou Z Y, Nan T X, Howe B M, Brown G J and Sun N X 2013 Adv. Mater. 25 1435
[6] Popkov A F, Davydova M D, Zvezdin K A, Solov'yov S V and Zvezdin A K 2016 Phys. Rev. B 93 094435
[7] Liu M 2014 Chin. Sci. Bull. 59 5180
[8] Wang Y A, Wang Y B, Rao W, Gao J X, Zhou W L and Yu J 2013 Chin. Phys. Lett. 30 047502
[9] Zhu M M, Zhou Z Y, Peng B, Zhao S S, Zhang Y J, Niu G, Ren W, Ye Z G, Liu Y H and Liu M 2017 Adv. Funct. Mater. 27 1605598
[10] Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H and Du Y W 2014 Chin. Phys. B 23 077505
[11] Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C and Wu G H 2014 Chin. Phys. B 23 047701
[12] Yu H Z, Chen H G, Xu K Q, Zhao K Y, Zeng H R and Li G R 2014 Chin. Phys. Lett. 31 107701
[13] Huang H B, Hu J M, Yang T N, Ma X Q and Chen L Q 2014 Appl. Phys. Lett. 105 122407
[14] Huang H B, Zhao C P and Ma X Q 2017 J. Magn. Magn. Mater. 426 415
[15] Zhang J X, Ke X, Gou G, Seidel J, Xiang B, Yu P, Chu Y H, Tendeloo G V, Ren X and Ramesh R 2013 Nat. Commun. 4 2678
[16] Fiebig M, Lottermoser T, Meier D and Trassin M 2016 Nat. Rev. Mater. 1 16046
[17] Chen Y B, Zhang F, Zhang L Y, Zhou J, Zhang S T and Chen Y F 2015 Acta Phys. Sin. 64 097502 (in Chinese)
[18] Rogdakis K, Seo J W, Viskadourakis Z, Wang Y, Qune L F N A, Choi E, Burton J D, Tsymbal E Y, Lee J and Panagopoulos C 2012 Nat. Commun. 3 1064
[19] Liu M, Nan T X, Hu J M, Zhao S S, Zhou Z Y, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q and Sun N X 2016 NPG Asia Mater. 8 e316
[20] Pei H Y, Zhang Y J, Guo S J, Ren L X, Yan H, Chen C L, Jin K X and Luo B C 2018 Appl. Phys. Lett. 112 192904
[21] Zhang J X, He Q, Trassin M, Luo W, Yi D, Rossell M D, Yu P, You L, Wang C H, Kuo C Y, Heron J T, Hu Z, Zeches R J, Lin H J, Tanaka A, Chen C T, Tjeng L H, Chu Y H and Ramesh R 2011 Phys. Rev. Lett. 107 147602
[22] Niu L W, Chen C L, Dong X L, Xing H, Luo B C and Jin K X 2016 Chin. Phys. B 25 107701
[23] Wei M M, Niu M S, Bi P Q, Hao X T, Ren S Q, Xie S J and Qin W 2017 Adv. Opt. Mater. 5 1700644
[24] Kabir R, Wang D Y, Zhang T S, Tian R M, Donelson R, Tan T T and Li S A 2014 Ceram. Int. 40 16701
[25] Norton D P, Chakoumakos B C, Budai J D, Lowndes D H, Sales B C, Thompson J R and Christen D K 1994 Science 265 2074
[26] Kida N, Yamada H, Sato H, Arima T, Kawasaki M, Akoh H and Tokura Y 2007 Phys. Rev. Lett. 99 197404
[27] Tokura Y 2007 J. Magn. Magn. Mater. 310 1145
[28] Pei H Y, Guo S J, Ren L X, Chen C L, Luo B C, Dong X L, Jin K X, Ren R and Zeeshan H M 2017 Sci. Rep. 7 6201
[29] Tokuda M, Mashimo T, Khandaker J I, Ogata Y, Mine Y, Hayami S and Yoshiasa A 2016 J. Mater. Sci. 51 7899
[30] Jeon J, Alagoz H S, Jung J and Chow K H 2015 Appl. Phys. Lett. 107 052402
[31] Varignon J, Bristowe N C, Bousquet E and Ghosez P 2015 Sci. Rep. 5 15364
[32] Fujioka J, Yasue T, Miyasaka S, Yamasaki Y, Arima T, Sagayama H, Inami T, Ishii K and Tokura Y 2010 Phys. Rev. B 82 144425
[33] Sundaresan A, Maignan A and Raveau B 1997 Phys. Rev. B 55 5596
[34] Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M and Tokura Y 2003 Phys. Rev. B 67 180401
[35] Hemberger J, Lunkenheimer P, Fichtl R, von Nidda H A K, Tsurkan V and Loidl A 2005 Nature 434 364
[36] Qiang G, Fang Y F, Lu X W, Cao S X and Zhang J C 2016 Appl. Phys. Lett. 108 022906
[37] Sundar V and Newnham R E 1992 Ferroelectrics 135 431
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[8] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[13] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[14] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!