Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088106    DOI: 10.1088/1674-1056/27/8/088106
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors

Liu-Hong Ma(马刘红)1,3, Wei-Hua Han(韩伟华)2,3, Xiao-Song Zhao(赵晓松)2,3, Yang-Yan Guo(郭仰岩)2,3, Ya-Mei Dou(窦亚梅)2,3, Fu-Hua Yang(杨富华)3,4
1 School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Engineering Research Center for Semiconductor Integrated Technology, Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We discuss the random dopant effects in long channel junctionless transistor associated with quantum confinement effects. The electrical measurement reveals the threshold voltage variability induced by the random dopant fluctuation. Quantum transport features in Hubbard systems are observed in heavily phosphorus-doped channel. We investigate the single electron transfer via donor-induced quantum dots in junctionless nanowire transistors with heavily phosphorus-doped channel, due to the formation of impurity Hubbard bands. While in the lightly doped devices, one-dimensional quantum transport is only observed at low temperature. In this sense, phonon-assisted resonant-tunneling is suppressed due to misaligned levels formed in a few isolated quantum dots at cryogenic temperature. We observe the Anderson-Mott transition from isolate electron state to impurity bands as the doping concentration is increased.
Keywords:  junctionless nanowire transistor      quantum transport      Hubbard band      quantum dot  
Received:  15 March 2018      Revised:  02 May 2018      Accepted manuscript online: 
PACS:  81.07.Gf (Nanowires)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.-c (Electronic transport in interface structures)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0200503), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (Grant No. 18IRTSTHN016), and the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 61404126).
Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华) Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors 2018 Chin. Phys. B 27 088106

[1] Wagner C and Harned N 2010 Nat. Photon. 4 24
[2] Wang W, Su Y F, Liu C R, Li D X, Wang P and Duan Z Y 2015 Chin. Phys. Lett. 32 128102
[3] Nayak K, Agarwal S, Bajaj M, Murali K V and Rao V R 2015 IEEE Trans. Electron Dev. 62 685
[4] Akhavan N D, Ferain I, Yu R, Razavi P and Colinge J P 2012 Solid-State Electron. 70 92
[5] Li Y and Hwang C H 2007 J. Appl. Phys. 102 084509
[6] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[7] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O and Simmons M Y 2012 Nat. Nanotechnol. 7 242
[8] Moraru D, Samanta A, Anh L T, Mizuno T, Mizuta H and Tabe M 2015 Sci. Rep. 4 6219
[9] Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2010 Nat. Nanotechnol. 5 133
[10] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A and White M 2010 Nat. Nanotechnol. 5 225
[11] Ma L H, Han W H, Wang H, Lyu Q F, Zhang W, Yang X and Yang F H 2016 Chin. Phys. B 25 068103
[12] Park J T, Kim J Y, Lee C W and Colinge J P 2010 Appl. Phys. Lett. 97 172101
[13] Mizuno T, Okumtura J and Toriumi A 1994 IEEE Trans. Electron. Dev. 41 2216
[14] Prati E, Hori M, Guagliardo F, Ferrari G and Shinada T 2012 Nat. Nanotechnol. 7 443
[15] Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113715
[16] Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
[17] Mott N F and Davis E A 2012 Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press)
[18] Ma L H, Han W H, Wang H, Hong W T, Lyu Q F, Yang X and Yang F H 2015 J. Appl. Phys. 117 034505
[19] Rosenbaum R 1991 Phys. Rev. B 44 3599
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!