Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate |
Shanna Zhu(朱珊娜)1,2, Gang Shi(史刚)1,2, Peng Zhao(赵鹏)1,2, Dechao Meng(孟德超)3,4, Genhao Liang(梁根豪)3, Xiaofang Zhai(翟晓芳)3,5, Yalin Lu(陆亚林)3,5,6, Yongqing Li(李永庆)1, Lan Chen(陈岚)1,2, Kehui Wu(吴克辉)1,2,7 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
4 Microsystem and Terahertz Research Center & Institute of Electronic Engineering, CAEP, Mianyang 621900, China;
5 Synergy Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
6 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China;
7 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Exchange coupling between topological insulator and ferromagnetic insulator through proximity effect is strongly attractive for both fundamental physics and technological applications. Here we report a comprehensive investigation on the growth behaviors of prototype topological insulator Bi2Se3 thin film on a single-crystalline LaCoO3 thin film on SrTiO3 substrate, which is a strain-induced ferromagnetic insulator. Different from the growth on other substrates, the Bi2Se3 films with highest quality on LaCoO3 favor a relatively low substrate temperature during growth. As a result, an inverse dependence of carrier mobility with the substrate temperature is found. Moreover, the magnetoresistance and coherence length of weak antilocalization also have a similar inverse dependence with the substrate temperature, as revealed by the magnetotransport measurements. Our experiments elucidate the special behaviors in Bi2Se3/LaCoO3 heterostructures, which provide a good platform for exploring related novel quantum phenomena, and are inspiring for device applications.
|
Received: 12 April 2018
Revised: 04 May 2018
Accepted manuscript online:
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300904 and 2016YFA0202301), the National Natural Science Foundation of China (Grant Nos. 11334011, 11674366, 11674368, and 11761141013), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07010200 and XDPB06). |
Corresponding Authors:
Lan Chen, Kehui Wu
E-mail: lchen@iphy.ac.cn;khwu@iphy.ac.cn
|
Cite this article:
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉) Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate 2018 Chin. Phys. B 27 076801
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
|
[3] |
Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
|
[4] |
Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
|
[5] |
Moore J E 2010 Nature 464 194
|
[6] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[7] |
Vobornik I, Manju U, Fujii J, Borgatti F, Torelli P, Krizmancic D, Hor Y S, Cava R J and Panaccione G 2011 Nano Lett. 11 4079
|
[8] |
Ferreira G J and Loss D 2013 Phys. Rev. Lett. 111 106802
|
[9] |
Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
|
[10] |
Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
|
[11] |
Luo W and Qi X L 2013 Phys. Rev. B 87 085431
|
[12] |
Qi X L, Li R, Zang J and Zhang S C 2009 Science 323 1184
|
[13] |
Li M, Cui W, Yu J, Dai Z, Wang Z, Katmis F, Guo W and Moodera J 2015 Phys. Rev. B 91 014427
|
[14] |
Chang C Z, Wei P and Moodera J S 2014 Mrs Bull. 39 867
|
[15] |
He K, Ma X C, Chen X, Lu L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
|
[16] |
Wei P, Katmis F, Assaf B A, Steinberg H, Jarillo-Herrero P, Heiman D and Moodera J S 2013 Phys. Rev. Lett. 110 186807
|
[17] |
Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freel, J W, Eremin I, Heiman D, Jarillo-Herrero P and Moodera J S 2016 Nature 533 513
|
[18] |
Kandala A, Richardella A, Rench D W, Zhang D M, Flanagan T C and Samarth N 2013 Appl. Phys. Lett. 103 202409
|
[19] |
Lang M, Montazeri M, Onbasli M C, Kou X, Fan Y, Upadhyaya P, Yao K, Liu F, Jiang Y, Jiang W, Wong K L, Yu G, Tang J, Nie T, He L, Schwartz R N, Wang Y, Ross C A and Wang K L 2014 Nano Lett. 14 3459
|
[20] |
Jiang Z, Katmis F, Tang C, Wei P, Moodera J S and Shi J 2014 Appl. Phys. Lett. 104 222409
|
[21] |
Jiang Z, Chang C Z, Tang C, Wei P, Moodera J S and Shi J 2015 Nano Lett. 15 5835
|
[22] |
Jiang Z, Chang C Z, Tang C, Zheng J G, Moodera J S and Shi J 2016 AIP Adv. 6 055809
|
[23] |
Yang W M, Yang S, Zhang Q H, Xu Y, Shen S P, Liao J, Teng J, Nan C W, Gu L, Sun Y, Wu K H and Li Y Q 2014 Appl. Phys. Lett. 105 092411
|
[24] |
Zheng G, Wang N, Yang J, Wang W, Du H, Ning W, Yang Z, Lu H Z, Zhang Y and Tian M 2016 Sci. Rep. 6 21334
|
[25] |
Tang C, Chang C Z, Zhao G, Liu Y, Jiang Z, Liu C X, McCartney M R, Smith D J, Chen T, Moodera J S and Shi J 2017 Sci. Adv. 3 1700307
|
[26] |
Manna P K and Yusuf S M 2014 Phys. Rep. 535 61
|
[27] |
Men'shov V N, Tugushev V V, Eremeev S V, Echenique P M and Chulkov E V 2013 Phys. Rev. B 88 224401
|
[28] |
Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114
|
[29] |
Zhang G, Qin H, Chen J, He X, Lu L, Li Y and Wu K 2011 Adv. Funct. Mater. 21 2351
|
[30] |
Richardella A, Zhang D M, Lee J S, Koser A, Rench D W, Yeats A L, Buckley B B, Awschalom D D and Samarth N 2010 Appl. Phys. Lett. 97 262104
|
[31] |
Wang Z Y, Li H D, Guo X, Ho W K, Xie M H 2011 J. Cryst. Growth 334 96
|
[32] |
Li C H, van't Erve O M J, Robinson J T, Liu Y, Li L and Jonker B T 2014 Nat. Nanotechnol. 9 218
|
[33] |
Ginley T P, Wang Y and Law S 2016 Crystals 6 154
|
[34] |
Ji H, Stokes R A, Alegria L D, Blomberg E C, Tanatar M A, Reijnders A, Schoop L M, Liang T, Prozorov R, Burch K S, Ong N P, Petta J R and Cava R J 2013 J. Appl. Phys. 114 114907
|
[35] |
Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G, Knize R and Lu Y 2018 PNAS 115 2873
|
[36] |
Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R and Löhneysen H 2008 Phys. Rev. B 77 014434
|
[37] |
Rivadulla F, Bi Z, Bauer E, Rivas-Murias B, Vila-Fungueiriño J M and Jia Q 2013 Chem. Mater. 25 55
|
[38] |
Freel, J W, Ma J X and Shi J 2008 Appl. Phys. Lett. 93 212501
|
[39] |
Zhu S, Meng D, Liang G, Shi G, Zhao P, Cheng P, Li Y, Zhai X, Lu Y, Chen L and Wu K 2018 Nanoscale 10 10041
|
[40] |
Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
|
[41] |
Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602
|
[42] |
Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H and Li Y Q 2011 Phys. Rev. B 83 241304(R)
|
[43] |
Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev. Lett. 106 196801
|
[44] |
Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W and Oh S 2011 Phys. Rev. B 84 073109
|
[45] |
Bansal N, Kim Y S, Brahlek M, Edrey E and Oh S 2012 Phys. Rev. Lett. 109 116804
|
[46] |
Lu H Z, Shi J R and Shen S Q 2011 Phys. Rev. Lett. 107 076801
|
[47] |
Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
|
[48] |
Lin C J, He X Y, Liao J, Wang X X, Sacksteder I V V, Yang W M, Guan T, Zhang Q M, Gu L, Zhang G Y, Zeng C G, Dai X, Wu K H and Li Y Q 2013 Phys. Rev. B 88 041307(R)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|