Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074201    DOI: 10.1088/1674-1056/27/7/074201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy

Ning Ru(茹宁)1,2, Yu Wang(王宇)2, Hui-Juan Ma(马慧娟)2, Dong Hu(胡栋)2, Li Zhang(张力)2, Shang-Chun Fan(樊尚春)1
1 School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
2 Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement, Beijing 100095, China
Abstract  We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To realize a stable output of 780 nm semiconductor laser, an FTMTS optical heterodyne frequency stabilization system is constructed. Before entering into the frequency stabilization system, the probe laser passes through an acousto-optical modulator (AOM) twice in advance to achieve tunable frequency while keeping the light path stable. According to the experimental results, the frequency changes from 120 MHz to 190 MHz after the double-pass AOM, and the intensity of laser entering into the system is greatly changed, but there is almost no change in the error signal of the FTMTS spectrum. Using this signal to lock the laser frequency, we can ensure that the frequency of the laser changes with the amount of AOM shift. Therefore, the magneto-optical trap (MOT)-molasses process can be implemented smoothly.
Keywords:  semiconductor laser      frequency stabilization      frequency shift      frequency tunable modulation transfer spectroscopy  
Received:  19 April 2018      Revised:  13 May 2018      Accepted manuscript online: 
PACS:  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
Fund: Project supported by the National Key Scientific Instrument and Equipment Development Project, China (Grant No. 2014YQ35046103).
Corresponding Authors:  Ning Ru     E-mail:  runing@buaa.edu.cn

Cite this article: 

Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春) Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy 2018 Chin. Phys. B 27 074201

[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Tian S C, Wang C L and Kang Z H 2012 Chin. Phys. B 21 064206
[3] Akulshin A M, Sautenkov V A, Velichasky V L, Zibov A S and Zverkov M V 1990 Opt. Commun. 77 295
[4] Sikking A M, Hughes I G, Tierney P and Conish S L 2007 Physica B:At. Mol. Opt. Phys. 40 187
[5] Bjorklund G C and Levenson M D 1983 Appl. Phys. B 32 145
[6] McCarron D J, King S A and Cornish S L 2008 Meas. Sci. Technol. 19 105601
[7] Eble J F and Kaler F S 2007 Appl. Phys. B 88 563
[8] Zhang J, Wei D, Xie C D and Peng K C 2003 Opt. Express 11 1338
[9] Donley E A, Filippo L and Jefferts S R 2005 Rev. Sci. C Instrum. 76 063112
[10] Shirley J H 1982 Opt. Lett. 7 537
[11] Zhang Z, Wang X L and Lin Q 2009 Opt. Express 17 10372
[12] Jaatinen E 1995 Opt. Commun. 120 91
[13] Cheng B, Wang Z Y and Wu B 2014 Chin. Phys. B 23 104222
[14] Ru N, Zhang L, Wang Y and Fan S C 2016 AIP Conf. Proc. 1740 090005
[15] Weiss D S, Young B C and Chu S 1992 Appl. Phys. B 54 321
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[5] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[6] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[7] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[8] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[9] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[10] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[11] Non-crossover sub-Doppler DAVLL in selective reflection scheme
Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2019, 28(8): 084211.
[12] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[13] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[14] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[15] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
No Suggested Reading articles found!