Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 050502    DOI: 10.1088/1674-1056/27/5/050502
GENERAL Prev   Next  

Chaos generation by a hybrid integrated chaotic semiconductor laser

Ming-Jiang Zhang(张明江)1,2, Ya-Nan Niu(牛亚楠)1,2, Tong Zhao(赵彤)1,2, Jian-Zhong Zhang(张建忠)1,2, Yi Liu(刘毅)1,2, Yu-Hang Xu(徐雨航)1,2, Jie Meng(孟洁)1,2, Yun-Cai Wang(王云才)1,2, An-Bang Wang(王安帮)1,2
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China;
2 Institute of Optoelectronic Engineering, College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  We design a hybrid integrated chaotic semiconductor laser with short-cavity optical feedback. It can be assembled in a commercial butterfly shell with just three micro-lenses. One of them is coated by a transflective film to provide the optical feedback for chaos generation while insuring regular laser transmission. We prove the feasibility of the chaos generation in this compact structure and provide critical external parameters for the fabrication by theoretical simulations. Rather than the usual changeless internal parameters used in previous simulation research, we extract the real parameters of the chip by experiment. Moreover, the maps of the largest Lyapunov exponent with varying bias current and feedback intensity Kap demonstrate the dynamic characteristics under different external-cavity conditions. Each laser chip has its own optimal external cavity length (L) and feedback intensity (Kap) to generate chaos because of the different internal parameters. We have acquired two ranges of optimal parameters (L=4 mm, 0.12 < Kap < 0.2 and L=5 mm, 0.07 < Kap < 0.12) for two different chips.
Keywords:  chaotic dynamic characteristics      integrated chaotic semiconductor laser      short-cavity optical feedback      extraction of internal parameters  
Received:  13 November 2017      Revised:  06 February 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  42.82.-m (Integrated optics)  
  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the International Science and Technology Cooperation Program of China (Grant No.2014DFA50870),the National Natural Science Foundation of China (Grant Nos.61377089,61475111,and 61527819),Shanxi Province Natural Science Foundation,China (Grant No.2015011049),Shanxi Province Youth Science and Technology Foundation,China (Grant No.201601D021069),Shanxi Scholarship Council of China (Grant No.2016-036),Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,China,and Program for Sanjin Scholar,China.
Corresponding Authors:  Ming-Jiang Zhang, An-Bang Wang     E-mail:  zhangmingjiang@tyut.edu.cn;wanganbang@tyut.edu.cn

Cite this article: 

Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮) Chaos generation by a hybrid integrated chaotic semiconductor laser 2018 Chin. Phys. B 27 050502

[13] Li Y, Xu K, Yang B J, Yuan Y and Wu N 2008 Acta Phys. Sin. 57 3353(in Chinese)
[1] Argyris A, Syvrids D, Larger L, Lodi V A, Colet P, Fischer I, Ojalvo J G, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[14] Ma Z, Zhang M J, Liu Y, Bao X Y, Liu H, Zhang Y N and Wang Y C 2015 IEEE Photon. J. 7 6100407
[2] Xiang S Y, Wen A J and Pan W 2016 IEEE Photon. Technol. Lett. 28 1988
[15] Yi H, Xa L, Xu J, Yu C, Wu Y, Li C and Zhu L 2017 IEEE Photon. J. 9 6803809
[3] Kanter I, Aviad Y, Reidler I, Cohen E and Rosenbluh M 2010 Nat. Photonics Photon. 4 58
[16] Zhang M J, Liu H, Zhang J Z, Liu Y and Liu R X 2017 IEEE Photon. J. 9 1600610
[4] Li P, Zhang J G, Sang L X, Liu X L, Guo Y Q, Wang A B, Shore K A and Wang Y C 2017 Opt. Lett. 42 2699
[17] Zhang J Z, Zhang M T, Zhang M J, Liu Y, Feng C K, Wang Y H and Wang Y C 2018 Opt. Lett. 43
[5] Shinohara S, Aenichi A, Davis P, Sunada A and Harayama T 2017 Opt. Express 25 6461
[18] Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H and Zhang Y N 2014 Int. J. Bifurcation and Chaos 24 1450032
[6] Zhang M J, Ji Y N, Zhang Y N, Wu Y, Xu H and Xu W P 2014 IEEE Photon. J. 6 7902412
[19] Yan S L 2016 Chin. Phys. B 25 090504
[20] Yan S L 2014 Chin. Phys. B 23 090503
[7] Wang L S, Guo Y Y, Li P, Zhao T, Wang Y C and Wang A B 2017 IEEE Photon. Technol. Lett. 29 1723
[8] Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H and Zhang Y N 2014 Int. J. Bifurcation and Chaos 24 1450032
[21] Sciamanna M and Shore K A 2015 Nat. Photon. 9 151
[22] Dou X, Wu C, Chen X, Yin H, Zhao Q, Hao Y and Zhao N 2014 Chin. Opt. Lett. 12 S10610
[9] Wang Y C, Wang B J and Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636
[10] Zhao T, Han H, Zhang J G, Liu X L, Chang X M, Wang A B and Wang Y C 2015 IEEE Photon. J. 7 6083909
[23] Yang L, Pan W, Yan L, Luo B, Mu P and Li N 2015 Chin. Opt. Lett. 13 041403
[11] Xu H, Wang B J, Zhang J G, Han H, Liu L, Wang Y C and Wang A B 2015 Inc. Microwave Opt. Technol. Lett. 57 2502
[24] Liu M, Zhang M J, Wang A B, Wang L S, Ji Y N and Ma Z 2013 Acta Phys. Sin. 62 064209(in Chinese)
[12] Gao S L, Zhong S C, Wei K and Ma H 2012 Acta Phys. Sin. 61 180501(in Chinese)
[25] Pan B W, Lu D, Yu L Q, Zhang L M and Zhao L J 2015 Proc. CLEO 1
[13] Li Y, Xu K, Yang B J, Yuan Y and Wu N 2008 Acta Phys. Sin. 57 3353(in Chinese)
[26] Zhu W Q, Wu Z M, Zhong Z Q, Yin X M, Song J, Zhao L J, Lu D and Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2119
[14] Ma Z, Zhang M J, Liu Y, Bao X Y, Liu H, Zhang Y N and Wang Y C 2015 IEEE Photon. J. 7 6100407
[27] Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q and Xia G Q 2013 Opt. Express 21 23358
[15] Yi H, Xa L, Xu J, Yu C, Wu Y, Li C and Zhu L 2017 IEEE Photon. J. 9 6803809
[28] Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K and Uchida A 2011 Opt. Express 19 5713
[16] Zhang M J, Liu H, Zhang J Z, Liu Y and Liu R X 2017 IEEE Photon. J. 9 1600610
[29] Yin X M, Zhong Z Q, Zhao L J, Lu D, Qiu H Y, Xia G Q and Wu Z M 2015 Opt. Commun. 355 551
[17] Zhang J Z, Zhang M T, Zhang M J, Liu Y, Feng C K, Wang Y H and Wang Y C 2018 Opt. Lett. 43
[30] Soriano M C, Garacia-Ojalvo J and Mirasso C R 2013 Rev. Mod. Phys. 85 421
[18] Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H and Zhang Y N 2014 Int. J. Bifurcation and Chaos 24 1450032
[31] Bosco A K D, Ohara S, Sato N, Akizawa Y, Uchida A, Harayama T and Inubushi M 2017 IEEE Photon. J. 9 6600512
[19] Yan S L 2016 Chin. Phys. B 25 090504
[32] Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[20] Yan S L 2014 Chin. Phys. B 23 090503
[33] Toomey J P, Kane D M, Mcmahon C, Argyris A and Syvridis D 2015 Opt. Express 23 18754
[21] Sciamanna M and Shore K A 2015 Nat. Photon. 9 151
[34] Olshansky R, Hill P, Lanzisera V and Powazinik W 1987 IEEE J. Quantum Electron 23 1410
[22] Dou X, Wu C, Chen X, Yin H, Zhao Q, Hao Y and Zhao N 2014 Chin. Opt. Lett. 12 S10610
[35] Morton P A, Tanbun-Ek T, Logan R A, Sergent A M, Sciortino P F and Coblentz D L 1992 IEEE Photon. Technol. Lett. 4 133
[23] Yang L, Pan W, Yan L, Luo B, Mu P and Li N 2015 Chin. Opt. Lett. 13 041403
[36] Bjerkan L, Royset A, Hafskjaer L and Myhre D 1996 J. Lightw. Technol. 14 839
[24] Liu M, Zhang M J, Wang A B, Wang L S, Ji Y N and Ma Z 2013 Acta Phys. Sin. 62 064209(in Chinese)
[37] Cartledge J C and Srinivasan R C 1997 J. Lightwave Lightw. Technol. 15 852
[25] Pan B W, Lu D, Yu L Q, Zhang L M and Zhao L J 2015 Proc. CLEO 1
[38] Ye J, Li H and McInerney J G 1993 Phys. Rev. A 47 2249
[26] Zhu W Q, Wu Z M, Zhong Z Q, Yin X M, Song J, Zhao L J, Lu D and Xia G Q 2015 IEEE Photon. Technol. Lett. 27 2119
[39] Ahmed M, Yamada M and Abdulrhmann S 2009 Int. J. Numer. Model 22 434
[27] Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q and Xia G Q 2013 Opt. Express 21 23358
[40] Lei Y M and Zhang H X 2017 Chin. Phys. B 26 030502
[28] Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K and Uchida A 2011 Opt. Express 19 5713
[41] Zhang M J, Xu Y H, Zhao T, Niu Y N, Lv T S, Liu Y, Zhang Z K, Zhang J Z, Wang Y C and Wang A B 2017 IEEE Photon. Technol. Lett. 29 1911
[29] Yin X M, Zhong Z Q, Zhao L J, Lu D, Qiu H Y, Xia G Q and Wu Z M 2015 Opt. Commun. 355 551
[30] Soriano M C, Garacia-Ojalvo J and Mirasso C R 2013 Rev. Mod. Phys. 85 421
[31] Bosco A K D, Ohara S, Sato N, Akizawa Y, Uchida A, Harayama T and Inubushi M 2017 IEEE Photon. J. 9 6600512
[32] Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[33] Toomey J P, Kane D M, Mcmahon C, Argyris A and Syvridis D 2015 Opt. Express 23 18754
[34] Olshansky R, Hill P, Lanzisera V and Powazinik W 1987 IEEE J. Quantum Electron 23 1410
[35] Morton P A, Tanbun-Ek T, Logan R A, Sergent A M, Sciortino P F and Coblentz D L 1992 IEEE Photon. Technol. Lett. 4 133
[36] Bjerkan L, Royset A, Hafskjaer L and Myhre D 1996 J. Lightw. Technol. 14 839
[37] Cartledge J C and Srinivasan R C 1997 J. Lightwave Lightw. Technol. 15 852
[38] Ye J, Li H and McInerney J G 1993 Phys. Rev. A 47 2249
[39] Ahmed M, Yamada M and Abdulrhmann S 2009 Int. J. Numer. Model 22 434
[40] Lei Y M and Zhang H X 2017 Chin. Phys. B 26 030502
[41] Zhang M J, Xu Y H, Zhao T, Niu Y N, Lv T S, Liu Y, Zhang Z K, Zhang J Z, Wang Y C and Wang A B 2017 IEEE Photon. Technol. Lett. 29 1911
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!